Advertisement

Water Dispersible Semiconductor Nanorod Assemblies Via a Facile Phase Transfer and Their Application as Fluorescent Biomarkers

  • Ambarish SanyalEmail author
  • Kevin M. Ryan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 143)

Abstract

We demonstrate the formation of water dispersed nanorod assemblies by phase transfer of semiconductor (CdS, CdSe, CdTe) nanorods from the organic to the aqueous using pluronic triblock copolymers. On phase transfer, the randomly dispersed nanorods in the organic medium close pack in the form of discs encapsulated in the hydrophobic core of water dispersible micelles. The assemblies showed excellent cellular uptake exhibiting membrane and cell specific fluorescence at low light intensity under confocal microscopy.

Keywords

Nanorod assemblies Copolymer Nanorod supercrystals Micelle Biomarker 

Notes

Acknowledgments

The work was principally supported by Science Foundation Ireland (SFI) under the Principal Investigator Programme Contract No. 06/IN.1/I85. Institutional funding from INSPIRE is further acknowledged. A. Sanyal acknowledges the Irish Research Council for Science, Engineering and Technology (IRCSET) for a research postdoctoral fellowship. The authors thank Professor Noel Buckley for access to Hitachi S-4800 HRSEM. Dr Gordon Armstrong is also acknowledged for help in optical measurements.

References

  1. 1.
    J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Sci. 292, 2060 (2001)CrossRefGoogle Scholar
  2. 2.
    S.A. Empedocles, R. Neuhauser, K. Shimizu, M.G. Bawendi, Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243 (1999)CrossRefGoogle Scholar
  3. 3.
    A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996)CrossRefGoogle Scholar
  4. 4.
    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Sci. 310, 462 (2005)CrossRefGoogle Scholar
  5. 5.
    X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nat. 421, 241–245 (2003)CrossRefGoogle Scholar
  6. 6.
    N.C. Greenham, X.G. Peng, A.P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B: Condens. Matter 54, 17628 (1996)CrossRefGoogle Scholar
  7. 7.
    J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulovic, M.G. Bawendi, Blue luminesce from (CdS) ZnS core shell nanocrystals. Angew. Chem. Int. Ed. 43, 2154 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Coe, W.K. Woo, M. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nat. 420, 800 (2002)CrossRefGoogle Scholar
  9. 9.
    R. Xie, D. Battaglia, X. Peng, Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao, D. Golberg, Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS. Nano. 3, 949 (2009)CrossRefGoogle Scholar
  11. 11.
    K.M. Ryan, A. Mastroianni, K.A. Stancil, H. Liu, A.P. Alivisatos, Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano. Lett. 6, 1479 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Ahmed, K.M. Ryan, Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. Nano. Lett. 7, 2480 (2007)CrossRefGoogle Scholar
  13. 13.
    C. O’Sullivan, S. Ahmed, K.M. Ryan, Gold tip formation on perpendicularly aligned semiconductor nanorod assemblies. J. Mater. Chem. 18, 5218 (2008)CrossRefGoogle Scholar
  14. 14.
    C. Kang, C.W. Lai, H.C. Peng, J.J. Shyue, P.T. Chou, 2D self-bundled CdS nanorods with micrometer dimension in the absence of an external directing process. ACS. Nano. 2, 750 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, The role of inter-particle and external forces in nanoparticle assembly. Nat. Mater. 7, 527 (2008)CrossRefGoogle Scholar
  16. 16.
    J.K. Jaiswal, H. Mattoussi, M.J. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47 (2003)CrossRefGoogle Scholar
  17. 17.
    W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S.C. Williams, R. Boudreau, M.A.L. Gros, C.A. Larabell, A.P. Alivisatos, Biological applications of colloidal nanocrystals. Nanotechnol. 14, R15–R27 (2003)CrossRefGoogle Scholar
  18. 18.
    L.S. Li, J. Walda, L. Manna, A.P. Alivisatos, Semiconductor nanorod liquid crystals. Nano. Lett. 2, 557 (2002)CrossRefGoogle Scholar
  19. 19.
    Z. Nie, D. Fava, E. Kumacheva, S. Zou, G.C. Walker, M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6, 609 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Zhuang, A.D. Shaller, J. Lynch, H. Wu, O. Chen, A.D.Q. Li, C.Y. Cao, Cylindrical superparticles from semiconductor nanorods. J. Am. Chem. Soc. 131, 6084 (2009)CrossRefGoogle Scholar
  21. 21.
    K.M. Ryan, N.R.B. Coleman, D.M. Lyons, J.P. Hanrahan, T.R. Spalding, M.A. Morris, D.C. Steytler, R.K. Heenan, J.D. Holmes, Control of pore morphology in mesoporous silicas synthesized from triblock copolymer templates. Langmuir 18, 4996 (2002)CrossRefGoogle Scholar
  22. 22.
    A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Controlled Release 82, 189 (2002)CrossRefGoogle Scholar
  23. 23.
    H. Liu, J.S. Owen, A.P. Alivisatos, Mechanistic study of precursor evolution in colloidal group II–VI semiconductor nanocrystal synthesis. Am. Chem. Soc. 129, 305 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Htoon, J.A. Hollingworth, A.V. Malko, R. Dickerson, V.I. Klimov, Light amplification in semiconductor nanocrystals: Quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776 (2003)CrossRefGoogle Scholar
  25. 25.
    U. Westedt, L. Barbu-Tudoran, A.K. Schaper, M. Kalinowski, H. Alfke, T. Kissel, Deposition of nanoparticles in the arterial vessel by porous balloon catheters: Localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS PharmSciTech. 4, 206 (2002)CrossRefGoogle Scholar
  26. 26.
    J.W.M. Bulte, M.M.J. Modo (eds.), Nanoparticles in biomedical imaging emerging technologies and applications in fundamental biomedical technologies, vol 3 (Springer, New York, 2008)Google Scholar
  27. 27.
    A. Merkoci, Electrochemical biosensing with nanoparticles. FEBS J 274, 310 (2007)CrossRefGoogle Scholar
  28. 28.
    F. Gentile, M. Ferrari, P. Decuzzi, The transport of nanoparticles in blood vessels: The effect of vessel permeability and blood rheology. Ann. Biomed. Eng. 36, 254 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Vo-Dinh (ed.), Biofunctionalization of fluorescent nanoparticles, nanotechnology in biology and medicine—methods, devices and applications (Taylor & Francis Group, Boca Raton, 2007)Google Scholar
  30. 30.
    J.L. Swift, D.T. Cramb, Nanoparticles as fluorescence labels: Is size all that matters. Biophys. J. 95, 865 (2008)CrossRefGoogle Scholar
  31. 31.
    D.P. Kalogianni, T. Koraki, T.K. Christopoulos, P.C. Ioannou, Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosens. Bioelectron. 2006, 21 (1069)Google Scholar
  32. 32.
    W.-J. Chen, P.-J. Tsai, Y.-C. Chen, Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria. Anal. Chem. 81, 1722 (2009)CrossRefGoogle Scholar
  33. 33.
    H.M.E. Azzazy, M.M.H. Mansour, S.C. Kazmierczak, Nanodiagnostics: A new frontier for clinical laboratory medicine. Clin. Chem. (Washington, D. C., 2006), 52, 1238Google Scholar
  34. 34.
    M. Brehm, T. Taubner, R. Hillenbrand, F. Keilmann, Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. Nano. Lett. 6, 1307 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Breunig, S. Bauer, A. Goepferich, Polymers and nanoparticles: intelligent tools for intra cellular targeting. Eur. J. Pharm. Biopharm. 68, 112 (2008)CrossRefGoogle Scholar
  36. 36.
    W. Jiang, B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotech. 3, 145 (2008)CrossRefGoogle Scholar
  37. 37.
    D.A. Egas, M.J. Wirth, Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu. Rev. Anal. Chem. 1, 833 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Planning and Performance DivisionNew DelhiIndia
  2. 2.Materials and Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations