Advertisement

Effect of Coordination Agent on the Structure and Morphology of ZnS Nanostructure

  • S. A. AcharyaEmail author
  • S. Darulkar
  • P. Choudhary
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 143)

Abstract

The high temperature structure of ZnS, (Wurtzite over 1,020 °C), is successfully prepared at low temperature (170 °C) by co-precipitation and hydrothermal route in presence of ethylenediamine (EN) as coordination agent. The effect of reaction route, and EN concentration on structure and morphology of ZnS nanocrystals are systematically investigated. We have demonstrated the structure transformation process from zinc blend to wurtzite with change in concentration of EN. Besides the structure evolution, morphological transformation from particles to rods and sheets, are also observed. To understand the low temperature structure transformation process of ZnS in presence of EN, chemical bonding approach is used. The bonding between Zn and S has been found to be admixture of covalent and ionic bond and transition from one bond state to other give rise to the phase transformation. The EN assists for formation of intermediate complex Zn-EN, which is responsible to modify the nature of bond of Zn–S, it initiates structure transformation. The geometry of structure of Zn–EN complex decides the growth direction of ZnS and thus morphology.

Keywords

ZnS Phase transition Ethylenediamine Nanosheet Nanorods 

References

  1. 1.
    A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933 (1996)Google Scholar
  2. 2.
    P.C. Kuo, H.W. Wang, S.Y. Chen, Synthesis and photoluminescent properties of wurtzite ZnS nanorods by hydrothermal and co-precipitation methods. J. Ceramic Soc. Japan 114, 918 (2006)Google Scholar
  3. 3.
    J. Wang, H. Luo, T. Chen, Z. Yuan, Facile shape-selective growthof ZnO nanotips and graded nanowires from its oriented nanorods in a saturated ZnS solution. Nanotechnology 21, 505603 (2010)Google Scholar
  4. 4.
    C. Liangyuan, L. Zhiyong, B. Shouli, Z. Kewei, L. Dianqing, C. Aifan, C.C. Liu, Synthesis of 1-dimensional ZnO and its sensing property for CO. Sens. Actuators B 143, 620 (2010)Google Scholar
  5. 5.
    X. Jian, Y. Liu, Y. Gao, X. Zhang, L. Shi, Preparation of one-dimensional nanostructured ZnO. Particuology 8, 383 (2010)Google Scholar
  6. 6.
    J.Y. Zhu, J.X. Zhang, H.F. Zhou, W.Q. Qin, L.T. Chai, Y.H. Hu, Microwave-assisted synthesis and characterization of ZnO nanorods arrays. Trans. Non Ferrous Met. Soc. China, 19, 1578 (2009)Google Scholar
  7. 7.
    J. Zhao, Z.G. Jin, T. Li, X.X. Liu, Nucleation and Growth of ZnO nanorods on the ZnO coated seed surface by solution chemical method. J. Eur. Ceram. Soc. 26, 2769 (2006)Google Scholar
  8. 8.
    Z. Deng, J. Qi, Y. Zhang, Q. Liao, Y. Huang, J. Cao, Synthesis, structure and growth mechanism of ZnS nanowire with high Aspect Ratio. Acta Phys.-Chim., Sin. 24(2), 193 (2008)Google Scholar
  9. 9.
    F. Li, Y. Jiang, L. Hu, L. Liu, Z. Li, X. Huang, Structural and luminescent properties of ZnO nanorods and ZnO/ZnS nanocomposites. J. Alloys Comp. 474, 531 (2009)Google Scholar
  10. 10.
    H. Chen, D. Shi, J. Qi, J. Jia, B. Wang, The stability and electronic properties of wurtzite and Zinc-blende znS nanowires. Phys. Lett. A 373, 371 (2009)Google Scholar
  11. 11.
    N. Uekawa, T. Matsumoto, T. Kojima, F. Shiba, K. Kakeguwa, Synthesis of stable sol of ZnS nanoparticles by heating the mixtures of ZnS precipitate and ethylene glycol”l. Colloids Surf. A: Physicochem. Eng. Aspects, 361, 132 (2010)Google Scholar
  12. 12.
    P. Calander, M. Gofferdi, V.T. Liveri, Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf. A: Phys. Eng. Aspects, 160, 9 (1999) Google Scholar
  13. 13.
    T.V. Prevenslik, Acoustoluminescence and sonoluminescence. J. Lumin. 87 1210 (2000)Google Scholar
  14. 14.
    T. Trindade, P. O’Brien, N.L Pickett, Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater. 13 3843 (2001)Google Scholar
  15. 15.
    J. Baars, G. Brandt, Structural phase transitions in ZnS. J Phys. Chem. Solids 34, 905 (1973)CrossRefGoogle Scholar
  16. 16.
    L. Brus, Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quantum Electron. 22, 1909 (1986)CrossRefGoogle Scholar
  17. 17.
    S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratan, J. Yang, H.F. Gray, B.R. Ratan, Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 60, 9191 (1999)CrossRefGoogle Scholar
  18. 18.
    K. Murakoshi, H. Hosokawa, N. Tanaka, M. Saito, Y. Wada, T. Sakata, H. Morib, S. Yanagida, Phase transition of ZnS nanocrystallites induced by surface modification at ambient temperature and pressure confirmed by electron diffraction. Chem. Commun. 3 321 (1998)Google Scholar
  19. 19.
    R.F. Zhuo, H.T. Feng, D. Yan, J.T. Chen, J.J. Feng, J.Z. Liu, P.X. Yan, Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures. J. Cryst. Growth 310, 3240 (2008)CrossRefGoogle Scholar
  20. 20.
    T. Thongtem, C. Pilapong, S. Thongtem, Silica gel-assisted solvothermal production of CdS, CuxS (x = 1, 2) and ZnS with different morphologies. Trans. Nonferrous Met. Soc. China 19, 105 (2009)CrossRefGoogle Scholar
  21. 21.
    L. Dong, Y. Chu, Y. Zhang, Microemulsion-mediated solvothermal synthesis of ZnS nanowires. Mater. Lett. 61, 4651 (2007)CrossRefGoogle Scholar
  22. 22.
    M.S Niasari, F. Davar, M.R.L Estarki, Controllable synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloys Comp. 494 199 (2010)Google Scholar
  23. 23.
    L. Li, Y. Tang, Y. Zhang, J. Yang, B. Du, Synthesis of ZnS hollow nanospheres with holes using different amine templates. Front. Chem. China 3, 76 (2008)CrossRefGoogle Scholar
  24. 24.
    C. Wang, Y. Ao, P. Wang, S. Zhang, J. Qian, J. Hou, A simple method for large-scale preparation of ZnS nanoribbon film and its photocatalytic activity for dye degradation. Appl. Surf. Sci. 256, 4125 (2010)Google Scholar
  25. 25.
    S.H. Yu, M. Yoshimura, Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS. (NH2CH2CH2NH2)0.5. Adv. Mater. 14, 296 (2002)Google Scholar
  26. 26.
    Z.X. Deng, W. Chen, X.M. Sun, Y.D. Li, Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg. Chem. 41, 869 (2002)Google Scholar
  27. 27.
    X.J. Chen, H.F. Xu, N.S. Xu, F.H. Zhao, W.J. Lin, G. Lin, Y.L. Fu, Z.L. Huang, H.Z. Wang, M.M. Wu, Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-Inorganic Network. Inog Chem, 42, 3100 (2003)Google Scholar
  28. 28.
    G.H. Yue, P.X. Yan, D. Yan, J.Z. Liu, D.M. Qu, Q. Yang, X.Y. Fan, Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties. J. Crys. Growth 293, 428 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsRTM Nagpur UniversityNagpurIndia

Personalised recommendations