Skip to main content

Herringbone Nanostructure and Composition Dependent Irreversibility in Martensite Transition Parameters in Ni39+xMn50Sn11-x (x ≤ 2.0) Heusler Alloys

  • Conference paper
  • 2988 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 143))

Abstract

The ferromagnetic Heusler Ni39+xMn50Sn11−x (x ≤ 2.0) alloys have been developed in tailoring the martensite transition with functional magnetocaloric properties. A single martensite phase of a herringbone nanostructure grows in a specific composition Ni41Mn50Sn9 (x = 2.0) which exhibits large irreversibility in the enthalpy change (ΔH), heat-capacity change (ΔCP), and magnetization (σ) during heating and cooling in the martensite ↔ austenite transition. As large value as ΔHM←A–ΔHM→A = 0.12 J/g has been observed with ΔCP(M←A)–ΔCP(M→A) ~22.5 mJ/kg-K from a DSC thermogram of a broad peak over from 225 K to 375 K. Thermomagnetic curves measured at a low magnetic field B = 5 mT reveal ~58 % lowered σ-value on heating a field cooled sample from a super paramagnetic martensite state at 250 K to a ferromagnetic austenite state with a distinct peak at 320 K. This irreversibility is highly sensitive to the alloy composition. As a result, a small change in the Sn-content ~9.5 at % (x = 1.5) gives reasonably much lowered ΔHM←A–ΔHM→A = 0.1 J/g and ΔCP(M←A)–ΔCP(M→A) = 10 mJ/kg-K in a martensite-austenite composite phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450 (2005)

    Article  CAS  Google Scholar 

  2. I. Babita, S. Ram, R. Gopalan, V. Chandrasekaran, Dynamic inverse-magnetocaloric and martensite transition in Ni49Mn38Sn13 nanocrystals in low magnetic fields. Philos. Mag. Lett. 89, 399 (2009)

    Article  CAS  Google Scholar 

  3. T. Krenke, M. Acet, E.F. Wassermann, Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys. Rev. B 73, 174413 (2006)

    Article  Google Scholar 

  4. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004)

    Article  CAS  Google Scholar 

  5. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys. Rev. B 72, 014412 (2005)

    Article  Google Scholar 

  6. J. Ortin, A. Planes, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta. Metall. 36, 1873 (1988)

    Article  CAS  Google Scholar 

  7. C. Segui, E. Cesari, J. Pans, Phenomenological modeling of the hysteresis loop in thermoelastic martensitic transformations. Mater. Trans. JIM 33, 650 (1992)

    Article  CAS  Google Scholar 

  8. W.H. Wang, J.L. Chen, Z.H. Liu, G.H. Wu, W.S. Zhan, Thermal hysteresis and friction of phase boundary motion in ferromagnetic Ni52Mn23Ga25 single crystals. Phys. Rev. B 65, 012416 (2001)

    Article  Google Scholar 

  9. K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Symmetry and reversibility of martensite transformations. Nature 428, 55 (2004)

    Article  CAS  Google Scholar 

  10. P.J. Shamberger, F.S Ohuchi, Hysteresis of the martensitic transition in magnetocaloric-effect Ni–Mn–Sn alloys. Phys. Rev. B 79, 144407 (2009)

    Google Scholar 

  11. V.V. Khovaylo, K.P. Skokov, O. Gutfleisch, H. Miki, R. Kainuma, T. Kanomata, Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field. Appl. Phys. Lett. 97, 052503 (2010)

    Article  Google Scholar 

  12. Y.M. Jin, A. Artemev, A.G. Khachaturyan, Three-dimensional phase field model of low symmetry martensitic transformation in polycrystal: simulation of ζ’2 martensite in AuCd alloys. Acta. Mater. 49, 2309 (2001)

    Article  CAS  Google Scholar 

  13. A.A. Prasanna, S. Ram, Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11-x (x≤2) alloys. Sci. Technol. Adv. Mater. (In press)

    Google Scholar 

  14. J. Frenkel, J. Dorfman, Spontaneous and induced magnetization in ferromagnetic bodies. Nature 126, 274 (1930)

    Article  Google Scholar 

  15. C. Kittel, Theory of the structure of ferromagnetic Domains in films and small particles. Phys. Rev. 70, 965 (1946)

    Article  CAS  Google Scholar 

  16. D.Y. Cong, Q. Luo, S. Roth, J. Liu, O. Gutfleisch, M. Potschke, C. Hurrich, L. Schultz, Sequence of structural and magnetic transitions in Ni48Co2Mn39Sn11 shape memory alloy. J. Magn. Magn. Mater. 323, 2519 (2011)

    Article  CAS  Google Scholar 

  17. D.Y. Cong, S. Roth, J. Liu, Q. Luo, M. Pötschke, C. Hürrich, L. Schultz, Superparamagnetic and superspin glass behaviors in the martensite state of Ni43.5Co6.5Mn39Sn11 magnetic shape memory alloy. Appl. Phys. Lett. 96, 112504 (2010)

    Article  Google Scholar 

  18. V.V. Kokorin, A.O. Perekos, A.A. Tshcherba, O.M. Babiy, T.V. Efimov, Intermartensitic phase transitions in Ni–Mn–Ga alloy, magnetic field effect. J. Magn. Magn. Mater. 302, 34 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. D. Das, Scientist F, UGC-DAE Consortium of Scientific Research, Kolkata, India, for providing the facility for the magnetic measurements. A. A. P. is thankful to All India Council for Technical Education (AICTE), New Delhi, and Bahubali College of Engineering, Shravanabelagola, for a financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prasanna, A.A., Ram, S. (2013). Herringbone Nanostructure and Composition Dependent Irreversibility in Martensite Transition Parameters in Ni39+xMn50Sn11-x (x ≤ 2.0) Heusler Alloys. In: Giri, P.K., Goswami, D.K., Perumal, A. (eds) Advanced Nanomaterials and Nanotechnology. Springer Proceedings in Physics, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34216-5_43

Download citation

Publish with us

Policies and ethics