Advertisement

Microscopic Analysis of Mechanical Properties of Aligned Carbon Nanotube/Epoxy Composite

  • S. BalEmail author
  • J. P. Borah
  • C. Borgohain
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 143)

Abstract

This study presents a process of manufacturing and characterization of Aligned Multiwall Carbon Nanotubes (ACNTs) reinforced epoxy composites along with their microscopic analysis. Sonication method was used to prepare the composite plates with different conditions of curing along with various wt %. Mechanical characterization such as elastic modulus, stress–strain behaviour, hardness and microscopic characterization which include Scanning Electron Microscopy (SEM) and Raman spectroscopy were carried out. Nanoindentation method also had been adopted to obtain some mechanical parameters. The influence of aligned CNTs dispersion on the mechanical properties of nanocomposites have been evaluated through comparison and analysis of stress–strain curve of samples cured under room temperature and refrigerated conditions. With increase in wt % of CNTs, the modulus in latter case were increasing thus by making stronger samples. The aligned CNTs were observed to be more strongly bonded to the epoxy matrix in above samples along with bridging mechanism. Raman results also supplemented the above by showing increase in intensity and shifting of G band in case of refrigerated samples that confirms better reinforcement and stress transfer from matrix to nanotubes.

Keywords

Nanocomposite Epoxy matrix Multiwall carbon nanotube Young modulus Raman spectroscopy 

References

  1. 1.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)CrossRefGoogle Scholar
  2. 2.
    C.G. Zhao, G.J. Hu, R. Justice, D.W. Schaefer, S. Zhang, M.S. Yang, C.C. Han, Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 46, 5125 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Kim, T.W. Pechar, E. Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192, 330 (2006)CrossRefGoogle Scholar
  4. 4.
    F.H. Gojny, J. Nastalczyk, Z. Roslaniec, K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370, 820 (2003)CrossRefGoogle Scholar
  5. 5.
    J.B. Donnet, Nano and microcomposites of polymers elastomers and their reinforcement. Compos. Sci. Technol. 63, 1085 (2003)CrossRefGoogle Scholar
  6. 6.
    H. Mahfuz, A. Adnan, V.K. Rangari, S. Jeelani, B.Z. Jang, Carbonnanoparticles/whiskers reinforced composites and their tensile response. Compos. Part A: Appl. Sci. Manuf. 35, 519 (2004)CrossRefGoogle Scholar
  7. 7.
    Y.H. Liao, M.T. Olivier, Z.Y. Liang, C. Zhang, B. Wang, Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater. Sci. Eng. A 385, 175 (2004)Google Scholar
  8. 8.
    P. Farhana, Y.X. Zhou, V. Rangari, S. Jeelani, Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater. Sci. Eng. A 405(1–2), 246 (2005)Google Scholar
  9. 9.
    S. Bal, Experimental study of mechanical and electrical properties of carbon \nanofiber/epoxy composites. Mater. Des. 31, 2406 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon Nanotubes. Macromolecules 39(16), 5194 (2006)CrossRefGoogle Scholar
  11. 11.
    N.R. Raravikar, L.S. Schadler, A. Vijayaraghavan, Y. Zhao, B. Wei, P.M. Ajayan, Synthesis and characterization of thickness-aligned carbon nanotube–polymer composite films. Chem. Mater. 17(5), 974 (2005)CrossRefGoogle Scholar
  12. 12.
    J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18(6), 689 (2006)CrossRefGoogle Scholar
  13. 13.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297(5582), 787 (2002)CrossRefGoogle Scholar
  14. 14.
    A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai, Mechanical and electrical properties of MWNT/epoxy composite. Compos. Sci. Tech. 62, 1993 (2002)CrossRefGoogle Scholar
  15. 15.
    K. Lau, S. Shi, H. Cheng, Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures. Compos. Sci. Technol. 63, 1161 (2003)CrossRefGoogle Scholar
  16. 16.
    E.T. Thostenson, T.W. Chou, On the elastic properties of carbon-nanotube based composites: modeling and characterization. J. Phys. D: Appl. Phys. 36, 573 (2003)CrossRefGoogle Scholar
  17. 17.
    H. Darmstadt, L. Summchen, J.M. Ting, U. Roland, S. Kaliaguine, C. Roy, Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers. Carbon 35(1581), 10–11 (1997)Google Scholar
  18. 18.
    M. Endo, Y.A. Kim, T. Takeda, S.H. Hong, T. Matusita, T. Hayashi, Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon 39(13), 2003 (2001)CrossRefGoogle Scholar
  19. 19.
    R.L. Smith, G.E. Sandland, An accurate method of determining the hardness of metals with particular reference to those of a high degree of hardness. Proc. Inst. Mech. Eng. 1, 623 (1922)Google Scholar
  20. 20.
    S. Bal, S.S. Samal, U.K. Mohanty, Mechanical and microstructural analysis of carbon nanotube composites pretreated at different temperatures. Am. J. Mater. Sci. 1(1), 1 (2011)Google Scholar
  21. 21.
    Y.K. Choi, K.I. Sugimoto, S.M. Song, Y. Gotoh, Y. Ohkoshi, M. Endo, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon 43, 2199 (2005)CrossRefGoogle Scholar
  22. 22.
    F.H. Gojny, K. Schulte, Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos. Sci. Technol. 64, 2303 (2004)CrossRefGoogle Scholar
  23. 23.
    G. Hartwig, Polymer Properties at Room and Cryogenic Temperatures (Plenum Publishing Corporation, New York, 1994)Google Scholar
  24. 24.
    P.M. Nagy, D. Aranyi, P. Horváth, P. Pötschke, S. Pegel, E. Kálmán, Nanoindentation investigation of carbon nanotube–polymer composites. Internet Electron. J. Mol. Des. 5, 135 (2006)Google Scholar
  25. 25.
    R. Saito, G. Dresselhaus, M.S. Dresselhauss, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRefGoogle Scholar
  26. 26.
    L. Bokobza, Multiwall carbon nanotube elastomeric composites: a review. Polymer 48, 4907 (2007)CrossRefGoogle Scholar
  27. 27.
    Y.X. Zhou, F. Pervin, S. Jeelani, P.K. Mallik, Improvement of mechanical properties of carbon fabric-epoxy composite using carbon nanofibers. J. Mater. Process. Technol. 198, 445 (2008)CrossRefGoogle Scholar
  28. 28.
    K.T. Lau, D. Hui, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Lett. Carbon 40, 1605 (2002)CrossRefGoogle Scholar
  29. 29.
    P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology, Wiley-VCH Verlag. (2003) Google Scholar
  30. 30.
    C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer Matrix. Appl. Phys. Lett. 81(20), 3873 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Deaprtment of PhysicsNIT SilcharAssamIndia
  2. 2.Department of PhysicsNIT NagalandNagalandIndia
  3. 3.Deprtment of Instrumentation and USICGauhati UniversityAssamIndia

Personalised recommendations