Advertisement

Magnetic Resosnance Studies of Nano Phase Conducting Polyaniline

  • B. Kavitha
  • N. Narsimlu
  • D. Srinivasu
  • CH. Srinivasm
  • K. Siva KumarEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 143)

Abstract

Polyaniline (PANI) was synthesized in Emaraldine form by in situ chemical oxidation method by using Ammonium perdisulphate as oxidizing agent. The XRD pattern indicates that PANI is a semi crystalline solid with d-spacing 4.801 and 4.358 Ǻ. The SEM results show that the particle size lies as an average of 80 nm and length 550 nm. Similarly the UV-Visible spectra of this polymer indicate two absorption bands at around 320 nm and 640 nm. These absorption bands are attributed to the transitions of π → π* and Benzenoid to Quinoid respectively. The FT-IR spectrum of PANI shows strong bands at 3,442, 2,925, 1,598, 1,494, 1,453, 1,176, 1,112 and 744 cm−1 respectively. 1H NMR spectrum shows 6 peaks with chemical shifts δ = 7.452, 7.468, 7.505, 7.525, 7.604, 7.638 ppm. The lower three peaks at (δ = 7.452, 7.468, 7.505 ppm) are attributed to the protons related to the 14N nucleus. These spectral lines intensity ratio lies as 1:1:1. Another three peaks at (δ = 7.525, 7.604, 7.638 ppm) are attributed to the three protons, which are present at CH Benzenoid, NH, CH at Quinoid. The intensity ratio of these spectral lines is 1:2:1. The room temperature ESR spectrum of PANI Emeraldine salt shows an unresolved peak with lande’s g factor 2.010 due to polarons.

Keywords

PANI XRD UV-visible NMR ESR 

Notes

Acknowledgments

The authors are thankful to the Head Department of Physics, Osmania University, Hyderabad, India for providing laboratory facilities.

References

  1. 1.
    A.J. Heegar, Nobel lecture, 8 Dec 2000Google Scholar
  2. 2.
    C.-H. Chen, J. Appl. Polym. Sci. 89, 2142–2148 (2003)Google Scholar
  3. 3.
    J. Ouyang, C.-W. Chu, R.J. Seng, A. Prakash, Y. Yang. Hand book of conducting polymers. Proceesing Appl. 3rd edn, pp 8–1 (2006)Google Scholar
  4. 4.
    R.H. Goncalves, W.H. Schreiner, E.R. Leite, Langmuir article. 26(14), 11657–11662 (2010)Google Scholar
  5. 5.
    J. Huang, R.B. Kaner, Handbook of conducting polymers, in Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, ed. by T.A. Skotheim, J.R. Reynolds, 3rd edn. (CRC Press Taylor & Francis Group, 1998), pp 7–16Google Scholar
  6. 6.
    J. Huang, R.B. Kaner, Hand Book of Conjugated Polymers, 3rd edn. 7–14 (1998)Google Scholar
  7. 7.
    S. Mu, Y. Yang, J. Phys. Chem. B 112, 11558–11563 (2008)Google Scholar
  8. 8.
    K. Gupta, P.C. Jana, A.K. Melkap J. Phys. Sci. 12, 233–238 (2008)Google Scholar
  9. 9.
    D.B. Dupare, M.D. Shirsat, A.S. Aswar Yhe Pacific, J. Sci. Technol. 10, 1 may 2009Google Scholar
  10. 10.
    D. Stauffer, A. Aharony, Introduction to percolation theory (Taylor & Francis, London, 1992)Google Scholar
  11. 11.
    M. Chipara,G.H. Aldicaa, D. Huib, M. Dimoniec, K.T. Laud, L. Georgescue, I. Munteanue, H. Marascoiuc, J. Optoelectron. Adv. Mater. 6(1), 297 (2004)Google Scholar
  12. 12.
    S.K. Shukla, A. Bhradvaja, A. Tiwari, S. Pilla, G.K. Parashar, G.C. Dubey, Adv. Mater. Lett. 1(2), 129–134 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Kavitha
    • 1
  • N. Narsimlu
    • 1
  • D. Srinivasu
    • 1
  • CH. Srinivasm
    • 1
  • K. Siva Kumar
    • 1
    Email author
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations