Advertisement

Observation of Nonlinear Optical Properties of Chemically Synthesized Cu2+ Doped ZnS Nanoparticles

  • A. K. Kole
  • P. KumbhakarEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 143)

Abstract

ZnS and Cu2+ (0.50 and 1.00 %) doped ZnS (i.e., ZnS:Cu) nanoparticles (NPs) are synthesized by chemical co-precipitation method at room temperature. X-ray diffraction (XRD) studies and the analysis of the selected area electron diffraction pattern (SAED) obtained from transmission electron microscopy (TEM) confirmed the formation of zinc blende structure of all the synthesized samples. Irrespective of the samples, the average particle sizes, as obtained from the XRD and TEM is about 2.5 nm. The room temperature photoluminescence (PL) emission measurements revealed the presence of green emission band in all the ZnS:Cu samples which is attributed to Cu2+ incorporation in ZnS. It is found by Gaussian deconvolution of the measured PL spectra of the synthesized samples that two peaks appeared at 405 and 445 nm in undoped ZnS NPs. In addition to the above two peaks, a third peak is noted in green region for ZnS:Cu NPs, the second and third peak shows a red shift with increasing Cu2+ concentration. Three photon absorption (3PA) and nonlinear refraction (NLR) coefficients are also measured at 532 nm, the second harmonic of a Q-switched Nd:YAG laser radiation, by using the z-scan technique, viz., in 0.5 % Cu2+ doped ZnS:Cu sample. From the analysis of open aperture (OA) z-scan data it is found that three photon absorptions (3PA) is the dominant mechanism for appearance of nonlinear absorption (NLA) in the sample and the extracted value of the intrinsic 3PA coefficient is ~109 times larger than that of bulk ZnS.

Keywords

II–VI semiconductor Nanostructures Optical properties Photoluminescence Nonlinear optical properties z-scan 

Notes

Acknowledgments

Authors are grateful to Department of Science and Technology (SR/FTP/PS-67/2008), Government of India, for the financial support. They express their sincere thanks to Dr. U. Chatterjee of Physics Dept, Burdwan University and Dr. R. Sarkar, NIT Durgapur for their technical help during experiments. AKK is grateful to the Ministry of Human Resource Development (MHRD), National Institute of Technology Durgapur, India for the maintenance scholarship.

References

  1. 1.
    T. Nakada, K. Furumi, A. Kunioka, High-efficiency cadmium-free Cu(In, Ga)Se2 thin-film solar cells with chemically deposited ZnS buffer layers. IEEE Trans. Electron Devices 46, 2093 (1999)CrossRefGoogle Scholar
  2. 2.
    F. Akihito, W. Hideo, S. Ken-Ichiro, N. Shigeru, H. Masato, Diamond-ZnS composite infrared window. Proc. SPIE 4375, 206 (2000)Google Scholar
  3. 3.
    D.V. Talapin, J. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2010)CrossRefGoogle Scholar
  4. 4.
    X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State Mater. Sci. 34, 190 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Liu, Y. Bando, X. Jiang, C. Li, X. Fang, H. Zeng, T. Terao, C. Tang, M. Mitome, D. Golberg, Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission. Nanotechnol. 21, 375601 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Tohda, Y. Fujita, T. Matsuoka, A. Abe, New efficient phosphor material ZnS:Sm, P for red electroluminescent devices. Appl. Phys. Lett. 48, 95 (1986)CrossRefGoogle Scholar
  7. 7.
    L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555 (1986)CrossRefGoogle Scholar
  8. 8.
    R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 (1994)CrossRefGoogle Scholar
  9. 9.
    R.N. Bhargava, Doped nanocrystalline materials -physics and applications. J. Lumin. 70, 85 (1996)CrossRefGoogle Scholar
  10. 10.
    S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sharma, Emission properties of manganese-doped ZnS nanocrystals. J. Phys. Chem. B 109, 1663 (2005)CrossRefGoogle Scholar
  11. 11.
    W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Synthesis and photoluminescence of ZnS:Cu nanoparticles. Opt. Mater. 29, 313 (2006)CrossRefGoogle Scholar
  12. 12.
    W. Chen, A.G. Joly, J. Malm, J. Bovin, Upconversion luminescence of Eu3+ and Mn2+ in ZnS: Mn2+, Eu3+ codoped nanoparticles. J. Appl. Phys. 95, 667 (2004)CrossRefGoogle Scholar
  13. 13.
    C.S. Tiwari, P. Kumbhakar, A.K. Mondal, A.K. Mitra, Synthesis and enhanced green photoluminescence emission from BCT ZnS nanocrystals. Phys. Status Solidi A 207, 1874 (2010)CrossRefGoogle Scholar
  14. 14.
    S.S. Nath, D. Chakdar, G. Gope, J. Kakati, B. Kalita, A. Talukdar, D.K. Avasthi, Green luminescence of ZnS and ZnS:Cu quantum dots embedded in zeolite matrix. J. Appl. Phys. 105, 094305 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Chattopadhyay, P. Kumbhakar, R. Sarkar, A.K. Mitra, Enhanced three-photon absorption and nonlinear refraction in ZnS and Mn2+ doped ZnS quantum dots. Appl. Phys. Lett. 95, 163115 (2009)CrossRefGoogle Scholar
  16. 16.
    A.K. Kole, P. Kumbhakar, Effect of manganese doping on the photoluminescence characteristics of chemically synthesized zinc sulfide nanoparticles. Appl. Nanosci. 2, 15 (2012)CrossRefGoogle Scholar
  17. 17.
    W. Zhang, H. Lee, Synthesis and optical property of water-soluble ZnS:Cu quantum dots by use of thioglycolic acid. Appl. Opt. 49, 2566 (2010)CrossRefGoogle Scholar
  18. 18.
    A.A. Bol, J. Ferwerda, J.A. Bergwerff, A. Meijerink, Luminescence of nanocrystalline ZnS:Cu2+. J. Lumin. 99, 325 (2002)CrossRefGoogle Scholar
  19. 19.
    M. Kuppayee, G.K.V. Nachiyar, V. Ramasamy, Synthesis and characterization of Cu2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents. Appl. Surf. Sci. 257, 6779 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Yang, M. Lü, D. Xü, D. Yuan, G. Zhou, Synthesis and photoluminescence characteristics of doped ZnS nanoparticles. Appl. Phys. A 73, 455 (2001)CrossRefGoogle Scholar
  21. 21.
    S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, Y.D. Choi, Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater. Lett. 58, 342 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks. Appl. Phys. Lett. 70, 2335 (1997)CrossRefGoogle Scholar
  23. 23.
    A.A. Khosravi, M. Kundu, L. Jatwa, S.K. Deshpande, U.A. Bhagwat, M. Sastry, S.K. Kulkarni, Green luminescence from copper doped zinc sulphide quantum particles. Appl. Phys. Lett. 67, 2702 (1995)CrossRefGoogle Scholar
  24. 24.
    S.J. Xu, S.J. Chua, B. Liu, L.M. Gan, C.H. Chew, G.Q. Xu, Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment. Appl. Phys. Lett. 73, 478 (1994)CrossRefGoogle Scholar
  25. 25.
    R.A. Ganeev, M. Baba, M. Morita, D. Rau, H. Fujii, A.I. Ryasnyansky, N. Ishizawa, M. Suzuki, H. Kuroda, Nonlinear optical properties of CdS and ZnS nanoparticles doped into zirconium oxide films. J. Opt. A:Pure Appl. Opt. 6, 447 (2004)CrossRefGoogle Scholar
  26. 26.
    X.B. Feng, G.C. Xing, W. Ji, Two-photon-enhanced three-photon absorption in transition-metal-doped semiconductor quantum dots. J. Opt. A: Pure Appl. Opt. 11, 024004 (2009)CrossRefGoogle Scholar
  27. 27.
    J. He, W. Ji, J. Mi, Y. Zheng, J.Y. Ying, Three-photon absorption in water-soluble ZnS nanocrystals. Appl. Phys. Lett. 88, 181114 (2006)CrossRefGoogle Scholar
  28. 28.
    G. Xing, W. Ji, Y. Zheng, J.Y. Ying, Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy. Appl. Phys. Lett. 93, 241114 (2008)CrossRefGoogle Scholar
  29. 29.
    B. Gu, J. Wang, J. Chen, Y. Fan, J. Ding, H. Wang, z-scan theory for material with two- and three-photon absorption. Opt. Express 13, 9230 (2005)CrossRefGoogle Scholar
  30. 30.
    M. Chattopadhyay, P. Kumbhakar, C.S. Tiwary, R. Sarkar, A.K. Mitra, U. Chatterjee, Multiphoton absorption and refraction in Mn2+ doped ZnS quantum dots. J. Appl. Phys. 105, 024313 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron 26, 760 (1990)CrossRefGoogle Scholar
  32. 32.
    R. Sarkar, C.S. Tiwary, P. Kumbhakar, S. Basu, A.K. Mitra, Yellow-orange light emission from Mn2+ doped ZnS nanoparticles. Phys. E 40, 3115 (2008)CrossRefGoogle Scholar
  33. 33.
    J.I. Pankove, Optical Processes in Semiconductor (Prentice-Hall, New Jersey, 1971)Google Scholar
  34. 34.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley Company, USA, 1978)Google Scholar
  35. 35.
    W. Chen, J.-O. Malm, V. Zwiller, Y. Huang, S. Liu, R. Wallenberg, J.-O. Bovin, L. Samuelson, Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles. Phys. Rev. B 61, 11021 (2000)CrossRefGoogle Scholar
  36. 36.
    P. Kumbhakar, M. Chattopadhyay, A.K. Mitra, Nonlinear optical properties of doped ZnS quantum dots. Int. J. Nanosci. 10, 177 (2011)CrossRefGoogle Scholar
  37. 37.
    J. He, Y.L. Qu, H.P. Li, J. Mi, W. Ji, Three-photon absorption in ZnO and ZnS crystals. Opt. Express 13, 9235 (2005)CrossRefGoogle Scholar
  38. 38.
    P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. Mckay, R.G. Mcduff, Single-beam z-scan: measurement techniques and analysis. J. Nonlinear Opt. Phys. Mater. 6, 251 (1997)CrossRefGoogle Scholar
  39. 39.
    S. Guo, K. Xu, J. Yun, H. Wang, X. You, N.B. Ming, An accurate method for extracting nonlinear refraction by z-scan technique in the presence of nonlinear absorption. J. Nonlinear Opt. Phys. Mater. 12, 307 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Nanoscience Laboratory, Department of PhysicsNational Institute of TechnologyDurgapurIndia

Personalised recommendations