Analyzing Human Activities Through Volunteered Geographic Information: Using Flickr to Analyze Spatial and Temporal Pattern of Tourist Accommodation

  • Yeran Sun
  • Hongchao Fan
  • Marco Helbich
  • Alexander Zipf
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Volunteered Geographic Information (VGI) provides valuable information to analyze human activities in space and time. In this chapter, we use Flickr photos as an example to explore the possibilities of VGI to analyze spatiotemporal patterns of tourists’ accommodation in Vienna, Austria as study site. Kernel density estimations and spatial scan statistics are used to explore the distribution of photos, while seasonality is considered additionally. The results show seasonal tendency of tourists for accommodation. It has been discovered that Flickr photos have, in general, the capability to improve tourism-related researches. In particular, they are useful to investigate spatiotemporal human activities, which open new possibilities for further location and event based analysis.


Volunteered geographic information Flickr Point pattern analysis Spatial cluster detection Tourist accommodation Seasonality 


  1. Andrienko G, Andrienko N, Bak P, Kisilevich S, Keim D (2009) Analysis of community-contributed space- and time-referenced data (example of flickr and panoramio photos). In: IEEE Symposium on visual analytics science and technology (VAST 2009), pp 213–214Google Scholar
  2. Berman M, Diggle PJ (1989) Estimating weighted integrals of the second-order intensity of a spatial point process. J Roy Stat Soc B 51:81–92Google Scholar
  3. Chen L, Roy A, (2009) Event detection from flickr data through wavelet-based spatial analysis. In: Proceedings of the 18th ACM conference on information and knowledge management. ACM, Hong Kong, pp 523–532Google Scholar
  4. Coenders G, Espinet J, Saez M (2001) Predicting random level and seasonality of hotel prices. A structural equation growth curve approach. Working Paper 2001/1, Department of Economics, University of Girona, GironaGoogle Scholar
  5. Diggle P (1985) A kernel method for smoothing point process data. J Roy Stat Soc C 34:138–147Google Scholar
  6. Dokmeci V, Balta N (1999) The evolution and distribution of hotels in Istanbul. Eur Planing Stud 7(1):99–110CrossRefGoogle Scholar
  7. Fernandez-Morales A, Mayorga-Toledano MC (2008) Seasonal concentration of the hotel demand in Costa del Sol: a decomposition by nationalities. Tourism Manage 29(5):940–949CrossRefGoogle Scholar
  8. Gatrell A, Bailey T, Diggle P, Rowlingson B (1996) Spatial point pattern analysis and its application in geographical epidemiology. Trans Inst Brit Geogr 21:256–274CrossRefGoogle Scholar
  9. Georgantzas NC (2003) Tourism dynamics: Cyprus’ hotel value chain and profitability. Syst Dyn Rev 19(3):175–212CrossRefGoogle Scholar
  10. Getis A, Boots B (1978) Models of spatial processes. Cambridge University Press, CambridgeGoogle Scholar
  11. Getz D, Nilsson PA (2004) Responses of family businesses to extreme seasonality in demand: the case of Bornholm. Den Tourism Manage 25(1):17–30CrossRefGoogle Scholar
  12. Girardin F, Dal Fiore F, Ratti C, Blat J (2007) Leveraging explicitly disclosed location information to understand tourist dynamics: a case study. J Location Based Serv 2(1):41–56CrossRefGoogle Scholar
  13. Goodchild M (2007a) Citizens as voluntary sensors: spatial data infrastructure in the world of Web 2.0. Int J Spat Data Infrastruct Res 2:24–32Google Scholar
  14. Goodchild M (2007b) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221CrossRefGoogle Scholar
  15. Grainger J, Judge G (1996) Changing patterns of seasonality in hotel and tourism demand: an analysis of Portsmouth monthly arrivals data. Discussion Paper Number 73, Department of Economics, University of Portsmouth, PortsmouthGoogle Scholar
  16. Grothe C, Schaab J (2009) Automated footprint generation from Geotags with kernel density estimation and support vector machines. Spat Cogn Comput 9(3):195–211Google Scholar
  17. Helbich M, Leitner M (2010) Postsuburban spatial evolution of the Viennese Urban Fringe: evidence from point process modeling. Urban Geogr 31(8):1100–1117CrossRefGoogle Scholar
  18. Helbich M, Leitner M (2012) Evaluation of spatial cluster detection algorithms for crime locations. In: Gaul W, Geyer-Schulz A, Schmidt-Thieme L, Kunze J (eds.) Challenges at the interface of data analysis, computer science, and optimization. Studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 193–201 (doi:10.1007/978-3-642-24466-7_20)Google Scholar
  19. Helbich M (2012) Beyond Postsuburbia? Multifunctional service agglomeration in Vienna’s Urban Fringe. J Econ Soc Geogr 103(1):39–52. doi: 10.1111/j.1467-9663.2011.00673.x Google Scholar
  20. Jeffrey D, Barden R (1999) An analysis of the nature, causes and marketing implications of seasonality in the occupancy performance of English hotels. Tourism Econ 5(1):69–91Google Scholar
  21. Jia YT, Garland M, Hart J (2011) Social network clustering and visualization using hierarchical edge bundles. ComputGraph Forum 30(8):2314–2327CrossRefGoogle Scholar
  22. Julio G, Jussi K, Paul C (2007) iCLEF 2006 Overview: searching the Flickr WWW photo-sharing repository. In: Evaluation of multilingual and multi-modal information retrieval, 7th workshop of the cross-language evaluation forum (CLEF 2006), AlicanteGoogle Scholar
  23. Kisilevich S, Krstajić M, Keim D, Andrienko N, Andrienko G (2010) Event-based analysis of people’s activities and behavior using Flickr and Panoramio geotagged photo collections. In: Proceedings of 14th international conference on information visualization, London, pp 289–296Google Scholar
  24. Koenig N, Bischoff E (2004a) Tourism demand patterns in turbulent times: analyzing welsh accommodation occupancy data for 1998–2001. Int J Tourism Res 6(4):205–220CrossRefGoogle Scholar
  25. Koenig N, Bischoff E (2004b) Analyzing seasonality in Welsh room occupancy data. Ann Tourism Res 31(2):374–392CrossRefGoogle Scholar
  26. Koenig N, Bischoff E (2005) Seasonality research: the state of the art. Int J Tourism Res 7:201–219CrossRefGoogle Scholar
  27. Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496CrossRefGoogle Scholar
  28. Lee R, Wakamiya S, Sumiya K (2011) Discovery of unusual regional social activities using geotagged microblogs. World Wide Web-Internet Web Inf Syst 14(4):321–349CrossRefGoogle Scholar
  29. Lindgren S, Lundstrom R (2011) Pirate culture and hacktivist mobilization: The cultural and social protocols of #WikiLeaks on Twitter. New Media Soc 13(6):999–1018CrossRefGoogle Scholar
  30. O’Sullivan D, Unwin D (2003) Geographic information analysis. Wiley, HobokenGoogle Scholar
  31. Pearce D, Grimmeau J (1985) The spatial structure of tourist accommodation and Hotel Demand in Spain. Geoforum 16:37–50CrossRefGoogle Scholar
  32. Popescu A, Grefenstette G (2009) Deducing trip related information from flickr. In: Proceedings of the 18th international conference on World Wide Web. ACM, Madrid, pp 1183–1184Google Scholar
  33. Rattenbury T, Good N, Maaman M (2007) Towards automatic extraction of event and place semantics from flickr tags. In: Proceedings of the 30th annual international conference on research and development in information retrieval. Amsterdam, The Netherlands, pp 103–110Google Scholar
  34. Rowlingson B, Diggle P (1993) SPLANCS: spatial point pattern analysis code in S-plus. Comput Geosci 19(5):627–655CrossRefGoogle Scholar
  35. Scharl A, Tochtermann K (eds) (2007) The geospatial web: how geobrowsers, social software and the Web 2.0 are shaping the network society. Springer, LondonGoogle Scholar
  36. Sharma A, Sneed J, Ravichandran S (2007) Spatial analysis of small hotel activity in Tanzania. Int J Contemp Hospitality Manage 19(7):589–599CrossRefGoogle Scholar
  37. Shoval N, Cohen-Hattab K (2001) Urban hotel development patterns in the face of political shifts. Ann Tourism Res 22:908–925CrossRefGoogle Scholar
  38. Smith JB (1994) Collective intelligence in computer-based collaboration. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  39. Sørensen N (1999) Modelling the seasonality of hotel nights in Denmark by county and nationality. Tourism Econ 5(1):9–23Google Scholar
  40. Tahayna B, Belkhatir M, Alhashmi SM, O’Daniel T (2011) Evolutionary optimization of video event classification. Int J Comput Math 88(18):3784–3802CrossRefGoogle Scholar
  41. Thom D, Bosch H, Koch S, Worner M, Ertl T (2012) Spatiotemporal anomaly detection through visual analysis of geolocated twitter messages. In: 2012 IEEE Pacific visualization symposium (Pacific Vis), pp 41–48Google Scholar
  42. Turner A (2006) Introduction to neogeography. O’Reilly Media, SebastopolGoogle Scholar
  43. Wall G, Dudycha D, Hutchinson J (1985) Point pattern analysis of accommodation in Toronto. Ann Tourism Res 12(4):603–618CrossRefGoogle Scholar
  44. Wiersma YF (2010) Birding 2.0: Citizen science and effective monitoring in the Web 2.0 World. Avian Conserv Ecol 5(2):13Google Scholar
  45. Yin Z, Cao L, Han J, Luo J, Huang T (2011) Diversified trajectory pattern ranking in geotagged social media.In: Proceedings of the 11th SIAM international conference on data mining (SDM 2011), Mesa, pp 980–991Google Scholar
  46. Zwol R (2007) Flickr: Who is looking? In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence, IEEE computer society, pp 184–190Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yeran Sun
    • 1
  • Hongchao Fan
    • 1
  • Marco Helbich
    • 1
  • Alexander Zipf
    • 1
  1. 1.Institute of Geography, University of HeidelbergHeidelbergGermany

Personalised recommendations