A 3D Indoor Routing Service with 2D Visualization Based on the Multi-Layered Space-Event Model

  • Andreas Donaubauer
  • Florian Straub
  • Nadia Panchaud
  • Claude Vessaz
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


In this chapter the draft for a novel conceptual model for indoor navigation, the multi layered space-event model (MLSM), is combined with existing standards for Geo Web Services in order to define a framework for a 3D indoor routing service with rule-based 2D visualization. We prove that the MLSM in the test scenarios we defined can be used as a conceptual model for an indoor routing service. With the help of a prototype we also show that the MLSM needs some extensions if a 3D MLSM graph shall be visualized in 2D. Our case scenarios and visualization examples are based on an existing Building Information Model (BIM) of a specific building.


3D Indoor routing Standards OpenLS GML Visualization Multi-layered space-event model 



The authors wish to express their gratitude to Claus Nagel from TU Berlin for the fruitful discussions and the advice regarding the MLSM (Open Geospatial Consortium 2010b).


  1. Agrawala M, Stolte C (2001) Rendering effective route maps: improving usability through generalization. In: Proceedings of ACM SIG- GRAPH 2001, pp 241–249Google Scholar
  2. AIGA (2011) Symbol signs. Retrieved on 27 May 2011
  3. Buxton W (2002) Less is more (more or less): uncommon sense and the design of computers. In: Denning PJ (ed) The invisible future: the seamless integration of technology in everyday life. McGraw-Hill, New York, pp 145–179Google Scholar
  4. Hagedorn B, Trapp M, Glander T, Dollner J (2009) Towards an indoor level-of-detail model for route visualization. In: Mobile data management: systems, services and middleware, Taipei, pp 692–697Google Scholar
  5. Hölscher C (2006) Up the down staircase: wayfinding strategies in multi-level buildings. J Environ Psychol 26(4):284–299CrossRefGoogle Scholar
  6. Inoue Y, Ikeda T, Yamamoto K, Yamashita T, Sashima A, Kurumatani A (2008) Usability study of indoor mobile navigation system in commercial facilities. In: UbiComp’08 Workshop W2—Ubiquitous systems evaluation (USE’08), TokyGoogle Scholar
  7. Jones CE, Haklay M, Griffiths S, Vaughan L (2009) A less-is-more approach to geovisualization—enhancing knowledge construction across multidisciplinary teams. Int J Geog Inf Sci 23(8):1077–1093CrossRefGoogle Scholar
  8. Karimi HA, Ghafourian M (2010) Indoor routing for individuals with special needs and preferences. Trans GIS 14(3):299–329CrossRefGoogle Scholar
  9. Kim H, Jun C, Yi H (2009) A SDBMS-based 2D-3D hybrid model for indoor routing. In: Mobile data management: systems, services and middleware, Taipei, pp 726–730Google Scholar
  10. Munkres JR (1984) Elements of algebraic topology. Addison-Wesley, Menlo ParkGoogle Scholar
  11. Neis P, Zipf A (2008) Extending the OGC OpenLS route service to 3D for an interoperable realisation of 3D focus maps with landmarks. J Location Based Serv 2(2):153–174CrossRefGoogle Scholar
  12. Open Geospatial Consortium Inc. (2006a) Symbology encoding, implementation specification. Version 1.1.0 (revision 4). Retrieved on 12 May 2011
  13. Open Geospatial Consortium Inc. (2006b) OpenGIS® web map service, implementation specification. Version 1.3.0. Retrieved on 12 May 2011
  14. Open Geospatial Consortium Inc. (2007) Styled layer descriptor profile of the web map service, implementation specification. Version 1.1.0 (revision 4). Retrieved on 12 May 2011
  15. Open Geospatial Consortium Inc. (2008) OpenGIS location services (OpenLS): core services. OGC 07-074, Version 1.2, OpenGIS interface standard. Retrieved on 12 May 2011)
  16. Open Geospatial Consortium Inc. (2009) OGC OWS-6 outdoor and indoor 3D routing services, engineering report. Version 0.3.0. Retrieved on 12 May 2011
  17. Open Geospatial Consortium Inc. (2010a) OpenGIS filter encoding 2.0, encoding standard. Version 2.0.0. Retrieved on 12 May 2011
  18. Open Geospatial Consortium Inc. (2010b) Requirements and space-event modeling for indoor navigation, OpenGIS discussion paper. Version 0.1.0. Retrieved on 12 May 2011
  19. Panchaud N (2011) Web-based visualization of indoor routing graphs. Zürich: ETH Zürich, D-BAUG, IGP, MasterprojektarbeitGoogle Scholar
  20. Schilling A, Goetz M (2010) Decision support systems using 3D OGC services and indoor routing—examples scenario from the OWS-6 Testbed. In: 5th 3D GeoInfo conference, Berlin, pp 159–162Google Scholar
  21. Sidler A (2010) Innenraummodellierung mit CityGML. Zürich: ETH Zürich, D-BAUG, IGP, MasterprojektarbeitGoogle Scholar
  22. Smith J, Mackaness W, Kealy A, Williamson I (2004) Spatial data infrastructure requirements for mobile location based journey planning. Trans GIS 8(1):22–23CrossRefGoogle Scholar
  23. Stoffel EP, Schoder K, Ohlbach HJ (2008) Applying hierarchical graphs to pedestrian indoor navigation. In: 16th ACM SIGSPATIAL international conference on advances in geographic information systems, vol 54. ACM, New York, pp 1–4Google Scholar
  24. Vessaz C (2011) Konzeption und prototypische entwicklung eines web service für innenraumnavigation. Zürich: ETH Zürich, D-BAUG, IGP, MasterprojektarbeitGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Donaubauer
    • 1
  • Florian Straub
    • 2
  • Nadia Panchaud
    • 2
  • Claude Vessaz
    • 2
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.Eidgenössische TechnischeZurichSwitzerland

Personalised recommendations