Abstract
A tangle is a graph drawn in the plane so that any pair of edges have precisely one point in common, and this point is either an endpoint or a point of tangency. If we allow a third option: the common point may be a proper crossing between the two edges, then the graph is called a tangled thrackle. We establish the following analogues of Conway’s thrackle conjecture: The number of edges of a tangle cannot exceed its number of vertices, n. We also prove that the number of edges of an x-monotone tangled thrackle with n vertices is at most n + 1. Both results are tight for n > 3. For not necessarily x-monotone tangled thrackles, we have a somewhat weaker, but nearly linear, upper bound.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackerman, E., Fox, J., Pach, J., Suk, A.: On grids in topological graphs. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 403–412. ACM Press (2009)
Braß, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete and Computational Geometry 23, 191–206 (2000)
Cairns, G., McIntyre, M., Nikolayevsky, Y.: The thrackle conjecture for K5 and K3,3. In: Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, pp. 35–54. Amer. Math. Soc., Providence (2004)
Cairns, G., Nikolayevsky, Y.: Generalized thrackle drawings of non-bipartite graphs. Discrete and Computational Geometry 41, 119–134 (2009)
Cairns, G., Nikolayevsky, Y.: Outerplanar thrackles. Graphs and Combinatorics 28, 85–96 (2012)
Fox, J., Frati, F., Pach, J., Pinchasi, R.: Crossings between Curves with Many Tangencies. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 1–8. Springer, Heidelberg (2010)
Fulek, R., Pach, J.: A computational approach to Conway’s thrackle conjecture. Computational Geometry: Theory and Applications 44, 345–355 (2011)
Graham, R.L.: The largest small hexagon. Journal of Combinatorial Theory, Series A 18, 165–170 (1975)
Green, J.E., Ringeisen, R.D.: Combinatorial drawings and thrackle surfaces. In: Graph Theory, Combinatorics, and Algorithms (Kalamazoo, MI, 1992), vol. 2, pp. 999–1009. Wiley-Intersci. Publ., Wiley, New York (1995)
Hopf, H., Pannwitz, E.: Aufgabe Nr. 167. Jahresbericht Deutsch. Math.-Verein. 43, 114 (1934)
Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discrete and Computational Geometry 18, 369–376 (1998)
Perlstein, A., Pinchasi, R.: Generalized thrackles and geometric graphs in ℝ3 with no pair of strongly avoiding edges. Graphs and Combinatorics 24, 373–389 (2008)
Piazza, B.L., Ringeisen, R.D., Stueckle, S.K.: Subthrackleable graphs and four cycles. In: Graph Theory and Applications (Hakone, 1990). Discrete Mathematics, vol. 127, pp. 265–276 (1994)
Pach, J., Sterling, E.: Conway’s conjecture for monotone thrackles. American Mathematical Monthly 118, 544–548 (2011)
Pach, J., Suk, A., Treml, M.: Tangencies between families of disjoint regions in the plane. Computational Geometry: Theory and Applications 45, 131–138 (2012)
Pach, J., Törőcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete and Computational Geometry 12, 1–7 (1994)
Pach, J., Tóth, G.: Disjoint edges in topological graphs. Journal of Combinatorics 1, 335–344 (2010)
Ringeisen, R.D.: Two old extremal graph drawing conjectures: progress and perspectives. Congressus Numerantium 115, 91–103 (1996)
Tóth, G.: Note on geometric graphs. Journal of Combinatorial Theory, Series A 89, 126–132 (2000)
Erdős, P.: Unsolved problem. In: Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 351–363. Inst. Math. Appl., Southend-on-Sea (1972)
Woodall, D.R.: Thrackles and deadlock. In: Welsh, D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 335–347. Academic Press (1969)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pach, J., Radoičić, R., Tóth, G. (2012). Tangled Thrackles. In: Márquez, A., Ramos, P., Urrutia, J. (eds) Computational Geometry. EGC 2011. Lecture Notes in Computer Science, vol 7579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34191-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-34191-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34190-8
Online ISBN: 978-3-642-34191-5
eBook Packages: Computer ScienceComputer Science (R0)