Skip to main content

Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads

  • Conference paper
Hardware and Software: Verification and Testing (HVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7261))

Included in the following conference series:

Abstract

Satisfiability (SAT) is considered as one of the most important core technologies in formal verification and related areas. Even though there is steady progress in improving practical SAT solving, there are limits on scalability of SAT solvers. We address this issue and present a new approach, called cube-and-conquer, targeted at reducing solving time on hard instances. This two-phase approach partitions a problem into many thousands (or millions) of cubes using lookahead techniques. Afterwards, a conflict-driven solver tackles the problem, using the cubes to guide the search. On several hard competition benchmarks, our hybrid approach outperforms both lookahead and conflict-driven solvers. Moreover, because cube-and-conquer is natural to parallelize, it is a competitive alternative for solving SAT problems in parallel.

The first and the fourth author are supported by the Austrian Science Foundation (FWF) NFN Grant S11408-N23 (RiSE). The third author is supported by Academy of Finland project 139402.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, T., Kullmann, O., Snevily, H.: On the van der Waerden numbers w(2; 3, t). Tech. Rep. arXiv:1102.5433 [math.CO], arXiv (February 2011)

    Google Scholar 

  2. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: AAAI 2002, pp. 613–619 (2002)

    Google Scholar 

  3. van Beek, P.: Backtracking search algorithms. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 4, pp. 85–134 (2006)

    Google Scholar 

  4. Biere, A.: Bounded model checking. In: Biere, et al. (eds.) [6], ch. 14, pp. 455–481

    Google Scholar 

  5. Biere, A.: Lingeling, Plingeling, Picosat and Precosat at SAT race 2010 (2010)

    Google Scholar 

  6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. FAIA, vol. 185. IOS Press (February 2009)

    Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In: Nebel, B. (ed.) IJCAI, pp. 248–253. Morgan Kaufmann (2001)

    Google Scholar 

  9. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

    Article  Google Scholar 

  10. Hamadi, Y.: Conclusion to the special issue on parallel SAT solving. JSAT 6(4), 263 (2009)

    Google Scholar 

  11. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4), 245–262 (2009)

    MATH  Google Scholar 

  12. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14(3), 263–313 (1980)

    Article  Google Scholar 

  13. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI 1995, pp. 607–613 (1995)

    Google Scholar 

  14. Heule, M.J.H., van Maaren, H.: Look-Ahead Based SAT Solvers. In: Biere, et al. (eds.) [6], ch. 5, vol. 185, pp. 155–184 (2009)

    Google Scholar 

  15. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning SAT Instances for Distributed Solving. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 372–386. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Grid-Based SAT Solving with Iterative Partitioning and Clause Learning. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 385–399. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Kleine Büning, H., Kullmann, O.: Minimal Unsatisfiability and Autarkies. In: Biere, et al. (eds.) [6], ch. 11, vol. 185, pp. 339–401 (February 2009)

    Google Scholar 

  18. Kullmann, O.: Investigating the behaviour of a SAT solver on random formulas. Tech. Rep. CSR 23-2002, University of Wales Swansea, Computer Science Report Series, 119 pages (2002), http://www-compsci.swan.ac.uk/reports/2002.html

  19. Kullmann, O.: Fundaments of Branching Heuristics. In: Biere, et al. (eds.) [6], ch. 7, vol. 185, pp. 205–244 (February 2009)

    Google Scholar 

  20. Kullmann, O.: The OKlibrary: Introducing a ”holistic” research platform for (generalised) SAT solving. Studies in Logic 2(1), 20–53 (2009)

    Google Scholar 

  21. Kullmann, O.: Green-Tao Numbers and SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 352–362. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Kullmann, O.: Computing ordinary and palindromic van der Waerden numbers via collaboration between look-ahead and conflict-driven SAT solvers (in preparation, February 2012)

    Google Scholar 

  23. Li, C.M.: Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: IJCAI, vol. (1), pp. 366–371 (1997)

    Google Scholar 

  24. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Biere, et al. (eds.) [6], ch. 4, vol. 185, pp. 131–153 (February 2009)

    Google Scholar 

  25. Mijnders, S., de Wilde, B., Heule, M.J.H.: Symbiosis of search and heuristics for random 3-SAT. In: Mitchell, D., Ternovska, E. (eds.) LaSh 2010 (2010)

    Google Scholar 

  26. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized bounded model checking. In: Brim, L., van de Pol, J. (eds.) PDMC. EPTCS, vol. 14, pp. 62–76 (2009)

    Google Scholar 

  27. Zhang, H.: Combinatorial designs by SAT solvers. In: Biere, et al. (eds.) [6], ch. 17, pp. 533–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A. (2012). Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds) Hardware and Software: Verification and Testing. HVC 2011. Lecture Notes in Computer Science, vol 7261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34188-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34188-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34187-8

  • Online ISBN: 978-3-642-34188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics