Abstract
In this paper we explore how to construct a Jensen-Shannon kernel for hypergraphs. We commence by calculating probability distribution over the steady state random walk on a hypergraph. The Shannon entropies required to construct the Jensen-Shannon divergence for pairs of hypergraphs are obtained from steady state probability distributions of the random walk. The Jensen-Shannon divergence between a pair of hypergraphs is the difference between the Shannon entropies of the separate hypergraphs and a composite structure. Our proposed kernel is not restricted to hypergraphs. Experiments on (hyper)graph datasets extracted from bioinformatics and computer vision datasets demonstrate the effectiveness and efficiency of the Jensen-Shannon hypergraph kernel for classification and clustering.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Berge, C.: Hypergraphs: combinatorics of finite sets. North-Holland (1989)
Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)
Chertok, M., Keller, Y.: Efficient high order matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 2205–2215 (2010)
Cooper, C., Frieze, A.M., Radzik, T.: The Cover Times of Random Walks on Hypergraphs. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 210–221. Springer, Heidelberg (2011)
Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Proceedings of the Conference on Computational Learning Theory, pp. 129–143 (2003)
Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the International Conference on Machine Learning, pp. 321–328 (2003)
Martins, A.F.T., Smith, N.A., Xing, E.P., Aguiar, P.M.Q., Figueiredo, M.A.T.: Nonextensive information theoretic kernels on measures. Journal of Machine Learning Research 10, 935–975 (2009)
Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42, 145–175 (2001)
Ren, P., Aleksic, T., Wilson, R.C., Hancock, E.R.: A polynomial characterization of hypergraphs using the ihara zeta function. Pattern Recognition 44, 1941–1957 (2011)
Shashua, A., Levin, A.: Linear image coding for regression and classification using the tensor-rank principle. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 42–49 (2001)
Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Proceedings of the Neural Information Processing Systems, pp. 1660–1668 (2009)
Shervashidze, N., Schweitzer, P., van Leeuwen, E., Mehlhorn, K., Borgwardt, K.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48 (2010)
Wachman, G., Khardon, R.: Learning from interpretations: a rooted kernel for ordered hypergraphs. In: Proceedings of the International Conference on Machine Learning, pp. 943–950 (2007)
Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bai, L., Hancock, E.R., Ren, P. (2012). A Jensen-Shannon Kernel for Hypergraphs. In: Gimel’farb, G., et al. Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2012. Lecture Notes in Computer Science, vol 7626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34166-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-34166-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34165-6
Online ISBN: 978-3-642-34166-3
eBook Packages: Computer ScienceComputer Science (R0)