Skip to main content

On the Role of Expander Graphs in Key Predistribution Schemes for Wireless Sensor Networks

  • Conference paper
Research in Cryptology (WEWoRC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7242))

Included in the following conference series:

Abstract

Providing security for a wireless sensor network composed of small sensor nodes with limited battery power and memory can be a non-trivial task. A variety of key predistribution schemes have been proposed which allocate symmetric keys to the sensor nodes before deployment. In this paper we examine the role of expander graphs in key predistribution schemes for wireless sensor networks. Roughly speaking, a graph has good expansion if every ‘small’ subset of vertices has a ‘large’ neighbourhood, and intuitively, expansion is a desirable property for graphs of networks. It has been claimed that good expansion in the product graph is necessary for ‘optimal’ networks. We demonstrate flaws in this claim, argue instead that good expansion is desirable in the intersection graph, and discuss how this can be achieved. We then consider key predistribution schemes based on expander graph constructions and compare them to other schemes in the literature. Finally, we propose the use of expansion and other graph-theoretical techniques as metrics for assessing key predistribution schemes and their resulting wireless sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Analyzing Graphs, http://docs.yworks.com/yfiles/doc/developers-guide/analysis.html

  2. Blackburn, S.R., Martin, K.M., Paterson, M.B., Stinson, D.R.: Key Refreshing in Wireless Sensor Networks. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 156–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Blum, M., Karp, R.M., Vornberger, O., Papadimitriu, C.H., Yannakakis, M.: The Complexity of Testing whether a Graph is a Superconcentrator. Information Processing Letters 13(4-5), 164–167 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camtepe, S.A., Yener, B.: Key Distribution Mechanisms for Wireless Sensor Networks: a Survey. Rensselaer Polytechnic Institute, Computer Science Department, Tech. Rep. TR-05-07 (2005)

    Google Scholar 

  5. Camtepe, S.A., Yener, B., Yung, M.: Expander Graph Based Key Distribution Mechanisms in Wireless Sensor Networks. In: ICC 2006, IEEE International Conference on Communications, pp. 2262–2267 (2006)

    Google Scholar 

  6. Chan, H., Perrig, A., Song, D.: Random Key Predistribution Schemes for Sensor Networks. In: SP 2003: Proceedings of the 2003 IEEE Symposium on Security and Privacy, pp. 197–213. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  7. Chen, C.-Y., Chao, H.-C.: A Survey of Key Distribution in Wireless Sensor Networks. In: Security and Communication Networks (2011)

    Google Scholar 

  8. Chen, W.-K.: Applied Graph Theory. University of Virginia, North-Holland (1971)

    Google Scholar 

  9. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, California State University, Fresno (1994)

    Google Scholar 

  10. Cichoń, J., Gołębiewski, Z., Kutyłowski, M.: From Key Predistribution to Key Redistribution. In: Scheideler, C. (ed.) ALGOSENSORS 2010. LNCS, vol. 6451, pp. 92–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Erdös, P., Rényi, A.: On the Evolution of Random Graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 17–61 (1960)

    Google Scholar 

  12. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: CCS 2002: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 41–47. ACM, New York (2002)

    Chapter  Google Scholar 

  13. Ghosh, S.K.: On Optimality of Key Pre-distribution Schemes for Distributed Sensor Networks. In: Buttyán, L., Gligor, V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 121–135. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bulletin of the American Mathematical Society 43(04), 439–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  16. Kleinberg, J., Rubinfeld, R.: Short Paths in Expander Graphs. In: Annual Symposium on Foundations of Computer Science, vol. 37, pp. 86–95 (1996)

    Google Scholar 

  17. Lee, J., Stinson, D.R.: Deterministic Key Predistribution Schemes for Distributed Sensor Networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 294–307. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Martin, K.M., Paterson, M.B.: An Application-Oriented Framework for Wireless Sensor Network Key Establishment. Electronic Notes in Theoretical Computer Science 192(2), 31–41 (2008)

    Article  Google Scholar 

  19. Paterson, M.B., Stinson, D.R.: A unified approach to combinatorial key predistribution schemes for sensor networks. Cryptology ePrint Archive, Report 076 (2011)

    Google Scholar 

  20. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 3–28. IEEE Computer Society, Washington, DC (2000)

    Chapter  Google Scholar 

  21. Shafiei, H., Mehdizadeh, A., Khonsari, A., Ould-Khaoua, M.: A Combinatorial Approach for Key-Distribution in Wireless Sensor Networks. In: Global Telecommunications Conference, IEEE GLOBECOM 2008, pp. 1–5. IEEE (2008)

    Google Scholar 

  22. Tarjan, R.: A Note on Finding the Bridges of a Graph. Information Processing Letters, 160–161 (1974)

    Google Scholar 

  23. Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. Computer Communications 30(11-12), 2314–2341 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kendall, M., Martin, K.M. (2012). On the Role of Expander Graphs in Key Predistribution Schemes for Wireless Sensor Networks. In: Armknecht, F., Lucks, S. (eds) Research in Cryptology. WEWoRC 2011. Lecture Notes in Computer Science, vol 7242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34159-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34159-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34158-8

  • Online ISBN: 978-3-642-34159-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics