Skip to main content

Patch-Based Data Analysis Using Linear-Projection Diffusion

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7619)

Abstract

To process massive high-dimensional datasets, we utilize the underlying assumption that data on a manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented by a tangent space of the manifold in its area and the tangential point of this tangent space. We use these tangent spaces, and the relations between them, to extend the scalar relations that are used by many kernel methods to matrix relations, which can encompass multidimensional similarities between local neighborhoods of points on the manifold. The properties of the presented construction are explored and its spectral decomposition is utilized to embed the patches of the manifold into a tensor space in which the relations between them are revealed. We present two applications that utilize the patch-to-tensor embedding framework: data classification and data clustering for image segmentation.

Keywords

  • Dimensionality reduction
  • manifold learning
  • kernel PCA
  • Diffusion Maps
  • patch processing
  • stochastic processing
  • vector processing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34156-4_31
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-34156-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coifman, R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21(1), 5–30 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  3. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  4. Jossinet, J.: Variability of impedivity in normal and pathological breast tissue. Medical and Biological Engineering and Computing 34, 346–350 (1996)

    CrossRef  Google Scholar 

  5. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Salhov, M., Wolf, G., Averbuch, A.: Patch-to-tensor embedding. Applied and Computational Harmonic Analysis 33(2), 182–203 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. da Silva, J.E., de Sá, J.M., Jossinet, J.: Classification of breast tissue by electrical impedance spectroscopy. Medical and Biological Engineering and Computing 38, 26–30 (2000)

    CrossRef  Google Scholar 

  8. Singer, A., Wu, H.: Orientability and diffusion maps. Applied and Computational Harmonic Analysis 31(1), 44–58 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. Singer, A., Wu, H.: Vector diffusion maps and the connection laplacian. Communications on Pure and Applied Mathematics 65(8), 1067–1144 (2012)

    MATH  CrossRef  Google Scholar 

  10. Wolf, G., Averbuch, A.: Linear-projection diffusion on smooth Euclidean submanifolds. Applied and Computational Harmonic Analysis (2012), doi:10.1016/j.acha.2012.03.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salhov, M., Wolf, G., Averbuch, A., Neittaanmäki, P. (2012). Patch-Based Data Analysis Using Linear-Projection Diffusion. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)