Online Predictive Model for Taxi Services

  • Luís Moreira-Matias
  • João Gama
  • Michel Ferreira
  • João Mendes-Moreira
  • Luís Damas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7619)


In recent years, both companies and researchers have been exploring intelligent data analysis to increase the profitability of the taxi industry. Intelligent systems for online taxi dispatching and time saving route finding have been built to do so. In this paper, we propose a novel methodology to produce online predictions regarding the spatial distribution of passenger demand throughout taxi stand networks. We have done so by assembling two well-known time series short-term forecast models: the time-varying Poisson models and ARIMA models. Our tests were performed using data gathered over a period of 6 months and collected from 63 taxi stands within the city of Porto, Portugal. Our results demonstrate that this model is a true major contribution to the driver mobility intelligence: 78% of the 253745 demanded taxi services were correctly forecasted in a 30 minutes horizon.


ARIMA Time-Varying Poisson Model Taxi Services Time Series Data Streams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glashenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multiagent real time scheduling system for taxi companies. In: Proceedings of 8th Int. Conf. on Autonomous Agents and Multi-Agent Systems, Budapest, Hungary (2009)Google Scholar
  2. 2.
    Lee, J., Park, G.-L., Kim, H., Yang, Y.-K., Kim, P., Kim, S.-W.: A Telematics Service System Based on the Linux Cluster. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part IV. LNCS, vol. 4490, pp. 660–667. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Junghoon, L., Inhye, S., Park, G.: Analysis of the Passenger Pick-Up Pattern for Taxi Location Recommendation. In: Conference on Networked Computing and Advanced Information Management, vol. 1, pp. 199–204 (2008)Google Scholar
  4. 4.
    Bin, L., Daqing, Z., Lin, S., Chao, C., Shijian, L., Guande, Q., Qiang, Y.: Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset. In: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 63–68 (2011)Google Scholar
  5. 5.
    Ihler, A., Hutchins, J., Smyth, P.: Adaptive Event Detection with Time-Varying Poisson Processes. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, pp. 207-216 (2006)Google Scholar
  6. 6.
    Box, G., Jenkins, G., Reinsel, G.: Time series analysis. Holden-day, San Francisco (1976)zbMATHGoogle Scholar
  7. 7.
    Matias, L., Gama, J., Mendes-Moreira, J., Sousa, J.F.: Validation of both number and coverage of bus Schedules using AVL data. In: Proceedings of IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, pp. 131–136 (2010)Google Scholar
  8. 8.
    Holt, C.: Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting 20, 5–10 (2004)CrossRefGoogle Scholar
  9. 9.
    Box, G., Pierce, D.: Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association 65, 1509–1526 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Williams, B., Hoel, L.: Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. Journal of Transportation Engineering 129, 664–672 (2003)CrossRefGoogle Scholar
  11. 11.
    Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems 18, 1014–1020 (2003)CrossRefGoogle Scholar
  12. 12.
    Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Cryer, J., Chan, K.: Time Series Analysis with Applications in R. Springer, USA (2008)zbMATHGoogle Scholar
  14. 14.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM, Washington, DC (2003)CrossRefGoogle Scholar
  15. 15.
    Makridakis, S., Hibon, M.: The M3-Competition: results, conclusions and implications. International Journal of Forecasting 16, 451–476 (2000)CrossRefGoogle Scholar
  16. 16.
    R Development Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria (2005)Google Scholar
  17. 17.
    Yeasmin, K., Hyndman, R.: Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software 27 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luís Moreira-Matias
    • 1
    • 2
  • João Gama
    • 2
    • 3
  • Michel Ferreira
    • 4
    • 5
  • João Mendes-Moreira
    • 1
    • 2
  • Luís Damas
    • 5
  1. 1.Departamento de Engenharia Informática, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.LIAAD-INESC TEC.PortoPortugal
  3. 3.Faculdade de EconomiaUniversidade do PortoPortoPortugal
  4. 4.Instituto de Telecomunicações, Departamento de Ciência de Computadores, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  5. 5.GeolinkPortoPortugal

Personalised recommendations