Skip to main content

Two-Stage Approach for Electricity Consumption Forecasting in Public Buildings

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Abstract

Many preprocessing and prediction techniques have been used for large-scale electricity load forecasting. However, small-scale prediction, such as in the case of public buildings, has received little attention. This field presents certain specific features. The most distinctive one is that consumption is extremely influenced by the activity in the building. For that reason, a suitable approach to predict the next 24-hour consumption profiles is presented in this paper. First, the features that influence the consumption are processed and selected. These environmental variables are used to cluster the consumption profiles in subsets of similar behavior using neural gas. A direct forecasting approach based on Support Vector Regression (SVR) is applied to each cluster to enhance the prediction. The input vector is selected from a set of past values. The approach is validated on teaching and research buildings at the University of León.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tiao, G.C., Tsay, R.S.: Some advances in non-linear and adaptive modelling in time-series. Journal of Forecasting 13(2), 109–131 (1994)

    Article  Google Scholar 

  2. Fan, S., Chen, L.: Short-term load forecasting based on an adaptive hybrid method. IEEE Transactions on Power Systems 21(1), 392–401 (2006)

    Article  Google Scholar 

  3. Sideratos, G., Vitellas, I., Hatziargyriou, N.: A load forecasting hybrid method for an isolated power system. In: 2011 16th International Conference on Intelligent System Application to Power Systems (ISAP), pp. 1–5 (September 2011)

    Google Scholar 

  4. Cao, L.: Support vector machines experts for time series forecasting. Neurocomputing 51(0), 321–339 (2003)

    Google Scholar 

  5. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, Reading (1993)

    Google Scholar 

  6. Gupta, P., Yamada, K.: Adaptive short-term forecasting of hourly loads using weather information. IEEE Transactions on PAS-91(5), 2085–2094 (1972)

    Google Scholar 

  7. Fan, S., Chen, L., Lee, W.J.: Short-term load forecasting using comprehensive combination based on multimeteorological information. IEEE Transactions on Industry Applications 45(4), 1460–1466 (2009)

    Article  Google Scholar 

  8. Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomputing 70(16-18), 2861–2869 (2007)

    Article  Google Scholar 

  9. Fay, D., Ringwood, J.V., Condon, M., Kelly, M.: 24-h electrical load data-a sequential or partitioned time series? Neurocomputing 55(3-4), 469–498 (2003)

    Article  Google Scholar 

  10. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  12. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), vol. 2 (1995)

    Google Scholar 

  13. Thompson, M.L.: Selection of variables in multiple regression: Part I. a review and evaluation. International Statistical Review 46(1), 1–19 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sorjamaa, A., Hao, J., Lendasse, A.: Mutual Information and k-Nearest Neighbors Approximator for Time Series Prediction. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 553–558. Springer, Heidelberg (2005)

    Google Scholar 

  15. Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting time series with Support Vector Machines. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004. Springer, Heidelberg (1997)

    Google Scholar 

  16. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  17. Chen, J., Deng, S.J., Huo, X.: Electricity price curve modeling and forecasting by manifold learning. IEEE Transactions on Power Systems 23(3), 877–888 (2008)

    Article  Google Scholar 

  18. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM toolbox for Matlab 5 (2000)

    Google Scholar 

  19. Suykens, J., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morán, A. et al. (2012). Two-Stage Approach for Electricity Consumption Forecasting in Public Buildings. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics