Improved Related-Key Differential Attacks on Reduced-Round LBlock

  • Shusheng Liu
  • Zheng Gong
  • Libin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7618)


At ACNS 2011, Wu and Zhang proposed a new lightweight block cipher which is named LBlock. The design rationale of LBlock considers the trade-offs between security against cryptanalyses and performance in low-resource implementations. In this paper, we present new attacks on reduced-round LBlock using related-key differential cryptanalysis. Firstly, we construct a new related-key boomerang distinguishing attack on 16-round LBlock. Secondly, we construct a key recovery attack on 22-round LBlock based on a 16-round related-key truncated differential. In contrast to the published cryptanalysis results of reduced-round LBlock, our attacks have advantages on data and computational complexities.


Lightweight block cipher Differential analysis Related-key boomerang attack LBlock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology 7(4), 229–246 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Biryukov, A., Nikolic, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The led block cipher. In: Preneel and Takagi [10], pp. 326–341Google Scholar
  8. 8.
    Lamberger, M., Mendel, F.: Higher-order differential attack on reduced sha-256. IACR Cryptology ePrint Archive, 37 (2011)Google Scholar
  9. 9.
    Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against 22 rounds of the lightweight block cipher lblock. Inf. Process. Lett. 112(16), 624–629 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917, pp. 2011–2013. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  11. 11.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-lightweight blockcipher. In: Preneel and Takagi [10], pp. 342–357Google Scholar
  12. 12.
    Suzaki, S.M.T., Minematsu, K., Kobayashi, E.: Twine: A lightweight, versatile block cipher. In: ECRYPT Workshop on Lightweight Cryptography (2011)Google Scholar
  13. 13.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Wu, W., Zhang, L.: Lblock: A lightweight block cipher *. Cryptology ePrint Archive, Report 2011/345 (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shusheng Liu
    • 1
  • Zheng Gong
    • 1
  • Libin Wang
    • 1
  1. 1.School of Computer ScienceSouth China Normal UniversityGuangzhouChina

Personalised recommendations