Outsourcing Encryption of Attribute-Based Encryption with MapReduce

  • Jingwei Li
  • Chunfu Jia
  • Jin Li
  • Xiaofeng Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7618)


Attribute-based encryption (ABE) is a promising cryptographic tool for fine-grained access control. However, the computational cost in encryption commonly grows with the complexity of access policy in existing ABE schemes, which becomes a bottleneck limiting its application. In this paper, we formulize the novel paradigm of outsourcing encryption of ABE to cloud service provider to relieve local computation burden. We propose an optimized construction with MapReduce cloud which is secure under the assumption that the master node as well as at least one of the slave nodes is honest. After outsourcing, the computational cost at user side during encryption is reduced to approximate four exponentiations, which is constant. Another advantage of the proposed construction is that the user is able to delegate encryption for any policy.


Cloud Computing Access Structure Random Oracle Master Node Cloud Service Provider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2010, pp. 48–59. ACM, New York (2010)CrossRefGoogle Scholar
  2. 2.
    Atallah, M.J., Li, J.: Secure outsourcing of sequence comparisons. International Journal of Information Security 4, 277–287 (2005)CrossRefGoogle Scholar
  3. 3.
    Atallah, M.J., Pantazopoulos, K., Rice, J.R., Spafford, E.E.: Secure outsourcing of scientific computations. In: Zelkowitz, M.V. (ed.) Trends in Software Engineering. Advances in Computers, vol. 54, pp. 215–272. Elsevier (2002)Google Scholar
  4. 4.
    Benjamin, D., Atallah, M.J.: Private and cheating-free outsourcing of algebraic computations. In: Proceedings of the 2008 Sixth Annual Conference on Privacy, Security and Trust, PST 2008, pp. 240–245. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  5. 5.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy 2007, pp. 321–334 (May 2007)Google Scholar
  6. 6.
    Bicakci, K., Baykal, N.: Server Assisted Signatures Revisited. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 143–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New Algorithms for Secure Outsourcing of Modular Exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 456–465 (2007)Google Scholar
  9. 9.
    Chung, K.M., Kalai, Y., Liu, F.H., Raz, R.: Memory Delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  11. 11.
    Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM, New York (2009)CrossRefGoogle Scholar
  14. 14.
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 113–122. ACM, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  17. 17.
    Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of abe ciphertexts. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011, p. 34. USENIX Association, Berkeley (2011)Google Scholar
  18. 18.
    Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Jakobsson, M., Wetzel, S.: Secure Server-Aided Signature Generation. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 383–401. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-Aware Attribute-Based Encryption with User Accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C. (eds.) ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 195–203. ACM, New York (2007)CrossRefGoogle Scholar
  23. 23.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science, pp. 543–553 (1999)Google Scholar
  24. 24.
    Sahai, A., Seyalioglu, H., Waters, B.: Dynamic Credentials and Ciphertext Delegation for Attribute-Based Encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Zhou, Z., Huang, D.: Efficient and secure data storage operations for mobile cloud computing. Cryptology ePrint Archive, Report 2011/185 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jingwei Li
    • 1
  • Chunfu Jia
    • 1
  • Jin Li
    • 2
  • Xiaofeng Chen
    • 3
  1. 1.College of Information Technical ScienceNankai UniversityChina
  2. 2.School of Computer ScienceGuangzhou UniversityChina
  3. 3.State Key Laboratory of Integrated Service NetworksXidian UniversityChina

Personalised recommendations