Forward Secure Attribute-Based Signatures

  • Tsz Hon Yuen
  • Joseph K. Liu
  • Xinyi Huang
  • Man Ho Au
  • Willy Susilo
  • Jianying Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7618)


Attribute-Based Signatures (ABS) is a versatile primitive which allows an entity to sign a message with fine-grained control over identifying information. A valid ABS only attests to the fact that “A single user, whose attributes satisfy the predicate, has endorsed the message”. While ABS has been well investigated since its introduction, it is unfortunate that key exposure–an inherent weakness of digital signatures–has never been formally studied in the scenario of ABS. We fill this gap by proposing a new notion called forward secure ABS, its formal security models and a generic (also the first) design based on well established crypto primitives.


Signature Scheme Random Oracle Forward Secure Monotone Span Program Valid Forgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla, M., Reyzin, L.: A New Forward-Secure Digital Signature Scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.: Two remarks on public-key cryptology. Manuscript, September 2000. Relevant material presented by the author in an invited lecture at the Fourth ACM Conference on Computer and Communications Security (1997)Google Scholar
  3. 3.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Miner, S.: A Forward-Secure Digital Signature Scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Constructions Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with untrusted update. In: ACM Conference on Computer and Communications Security, pp. 191–200. ACM (2006)Google Scholar
  8. 8.
    Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes without random oracles. Discrete Applied Mathematics 154(2), 175–188 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In: ACM Conference on Computer and Communications Security, pp. 108–115. ACM (2000)Google Scholar
  13. 13.
    Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS, pp. 60–69. ACM (2010)Google Scholar
  14. 14.
    Libert, B., Quisquater, J.-J., Yung, M.: Forward-secure signatures in untrusted update environments: efficient and generic constructions. In: ACM Conference on Computer and Communications Security, pp. 266–275. ACM (2007)Google Scholar
  15. 15.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Malkin, T., Micciancio, D., Miner, S.K.: Efficient Generic Forward-Secure Signatures with an Unbounded Number of Time Periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Meiklejohn, S.: An extension of the groth-sahai proof system. Master’s thesis, Brown University (2009)Google Scholar
  18. 18.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Shacham, H., Waters, B.: Efficient Ring Signatures Without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tsz Hon Yuen
    • 1
  • Joseph K. Liu
    • 2
  • Xinyi Huang
    • 3
  • Man Ho Au
    • 4
  • Willy Susilo
    • 4
  • Jianying Zhou
    • 2
  1. 1.University of Hong KongHong Kong
  2. 2.Institute for Infocomm ResearchSingapore
  3. 3.School of Mathematics and Computer ScienceFujian Normal UniversityChina
  4. 4.School of Computer Science and Software EngineeringUniversity of WollongongAustralia

Personalised recommendations