Symmetric-Key Encryption Scheme with Multi-ciphertext Non-malleability

  • Akinori Kawachi
  • Hirotoshi Takebe
  • Keisuke Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7631)


A standard notion of non-malleability is that an adversary cannot forge a ciphertext c′ from a single valid ciphertext c for which a plaintext m′ of c′ is meaningfully related to a plaintext m of c. The multi-ciphertext non-malleability is a stronger notion; an adversary is allowed to obtain multiple ciphertexts c 1,c 2,... in order to forge c′. We provide an efficient symmetric-key encryption scheme with an information-theoretic version of the multi-ciphertext non-malleability in this paper by using ℓ-wise almost independent permutations of Kaplan, Naor, and Reingold.


symmetric-key encryption information-theoretic security non-malleability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brodsky, A., Hoory, S.: Simple permutations mix even better. Random Struct. Algorithms 32(3), 274–289 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gowers, W.T.: An almost m-wise independent random permutation of the cube. Combinatorics, Probability & Computing 5, 119–130 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hanaoka, G.: Some Information Theoretic Arguments for Encryption: Non-malleability and Chosen-Ciphertext Security (Invited Talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 223–231. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Hanaoka, G., Shikata, J., Hanaoka, Y., Imai, H.: Unconditionally secure anonymous encryption and group authentication. Comput. J. 49(3), 310–321 (2006)CrossRefGoogle Scholar
  6. 6.
    Hoory, S., Magen, A., Myers, S., Rackoff, C.: Simple permutations mix well. Theor. Comput. Sci. 348(2-3), 251–261 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. Algorithmica 55(1), 113–133 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kawachi, A., Portmann, C., Tanaka, K.: Characterization of the Relations between Information-Theoretic Non-malleability, Secrecy, and Authenticity. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 6–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    McAven, L., Safavi-Naini, R., Yung, M.: Unconditionally Secure Encryption Under Strong Attacks. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 427–439. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Relations Among Notions of Non-malleability for Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 519–535. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Rees, E.G.: Notes on geometry. Springer (1983)Google Scholar
  12. 12.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)Google Scholar
  13. 13.
    Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE Transactions on Information Theory 52(3), 1130–1140 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saks, M.E., Srinivasan, A., Zhou, S., Zuckerman, D.: Low discrepancy sets yield approximate min-wise independent permutation families. Inf. Process. Lett. 73(1-2), 29–32 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Akinori Kawachi
    • 1
  • Hirotoshi Takebe
    • 1
  • Keisuke Tanaka
    • 1
  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyMeguro-kuJapan

Personalised recommendations