Advertisement

Compact Stateful Encryption Schemes with Ciphertext Verifiability

  • S. Sree Vivek
  • S. Sharmila Deva Selvi
  • C. Pandu Rangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7631)

Abstract

Increasingly wider deployment of encryption schemes call for schemes possessing additional properties such as randomness re-use, compactness and ciphertext verifiability. While novel approaches such as stateful encryption schemes contributes for randomness re-use (to save computational efforts), the requirements such as ciphertext verifiability leads to increase in the size of ciphertext. Thus, it is interesting and challenging to design stateful encryption schemes that offer ciphertext verifiability and result in compact ciphertexts. We propose two new stateful public key encryption schemes with ciphertext verifiability. Our schemes offer more compact ciphertexts when compared to all existing stateful public key encryption schemes with ciphertext verifiability. Our first scheme is based on the SDH assumption and the second scheme is based on the CDH assumption. We have proved both the schemes in the random oracle model.

Keywords

Stateful Public Key Encryption Adaptive Chosen Ciphertext Security (CCA) Compact Ciphertext with Ciphertext Verification Random Oracle model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Framework for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Kiltz, E., Okamoto, T.: Compact CCA-Secure Encryption for Messages of Arbitrary Length. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 377–392. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Baek, J., Chu, C.-K., Zhou, J.: On Shortening Ciphertexts: New Constructions for Compact Public Key and Stateful Encryption Schemes. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 302–318. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation. In: ACM Conference on Computer and Communications Security, pp. 380–389. ACM (2006)Google Scholar
  6. 6.
    Boyen, X.: Miniature CCA2 PK Encryption: Tight Security Without Redundancy. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 485–501. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. Journal of Cryptology 22(4), 470–504 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kiltz, E., Malone-Lee, J.: A General Construction of IND-CCA2 Secure Public Key Encryption. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 152–166. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kurosawa, K., Matsuo, T.: How to Remove MAC from DHIES. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 236–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Relations Among Notions of Non-malleability for Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 519–535. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Sree Vivek
    • 1
  • S. Sharmila Deva Selvi
    • 1
  • C. Pandu Rangan
    • 1
  1. 1.Theoretical Computer Science Lab., Department of Computer Science and EngineeringIndian Institute of Technology MadrasIndia

Personalised recommendations