Advertisement

Generic Construction of GUC Secure Commitment in the KRK Model

  • Itsuki Suzuki
  • Maki Yoshida
  • Toru Fujiwara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7631)

Abstract

This paper proposes a generic construction of GUC secure commitment against static corruptions in the KRK (Key Registration with Knowledge) model. The GUC security is a generalized version of universally composable security which deals with global setup used by arbitrary many protocols at the same time. The proposed construction is the first GUC secure protocol in which the commit phase is non-interactive (whereas the reveal phase is interactive). Thus, the proposed construction is suitable for applications where many values are committed to a few receivers within a short time period. The proposed construction uses simple tools, a public key encryption (PKE) scheme, a Sigma protocol, a non-interactive authenticated key exchange (NI-AKE) scheme, a message authentication code (MAC), for which efficient constructions have been presented. For the sake of simplicity of the proposed construction, which uses GUC secure authenticated communication (constructed from MAC and NI-AKE), we have not achieve full adaptive security because GUC secure authenticated communication in the KRK model is impossible.

Keywords

Commitment GUC security KRK Static adversary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for Hybrid Encryption. J. Cryptology 21(1), 97–130 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. IACR Cryptology ePrint Archive, Report 2000/067 (2000)Google Scholar
  4. 4.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-party and Multi-party Secure Computation. In: STOC 2002, pp. 494–503 (2002)Google Scholar
  6. 6.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Damgard, I., Groth, J.: Non-interactive and Reusable Non-Malleable Commitment Schemes. In: STOC 2003, pp. 426–437 (2003)Google Scholar
  9. 9.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. on Information Theory IT-22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and On-Line Deniability of Authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009); The full version is [17]CrossRefGoogle Scholar
  11. 11.
    Damgård, I.B., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dodis, Y., Shoup, V., Walfish, S.: Efficient Constructions of Composable Commitments and Zero-Knowledge Proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Fischlin, M., Libert, B., Manulis, M.: Non-interactive and Re-usable Universally Composable String Commitments with Adaptive Security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lindell, Y.: Highly-Efficient Universally-Composable Commitments Based on the DDH Assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient Non-interactive Universally Composable String-Commitment Schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Walfish, S.: Enhanced Security Models for Network Protocols. Ph.D. thesis, New York University (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Itsuki Suzuki
    • 1
  • Maki Yoshida
    • 1
  • Toru Fujiwara
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan

Personalised recommendations