Skip to main content

Efficient Concurrent Oblivious Transfer in Super-Polynomial-Simulation Security

  • Conference paper
Book cover Advances in Information and Computer Security (IWSEC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7631))

Included in the following conference series:

  • 599 Accesses

Abstract

In this paper, we show a concurrent oblivious transfer protocol in super-polynomial-simulation (SPS) security. Our protocol does not require any setup and does not assume any independence among the inputs. In addition, our protocol is efficient since it does not use any inefficient primitives such as general zero-knowledge proofs for all NP statements. This is the first concurrent oblivious transfer protocol that achieves both of these properties simultaneously. The security of our protocol is based on the decisional Diffie-Hellman (DDH) assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE Computer Society (2005)

    Google Scholar 

  3. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

    Google Scholar 

  4. Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW, pp. 219–233. IEEE Computer Society (2004)

    Google Scholar 

  5. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550. IEEE Computer Society (2010)

    Google Scholar 

  7. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Constructions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Damgård, I., Nielsen, J.B., Orlandi, C.: Essentially Optimal Universally Composable Oblivious Transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 318–335. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: FOCS, pp. 314–324. IEEE Computer Society (2000)

    Google Scholar 

  12. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently Secure Computation in Constant Rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  14. Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Green, M., Hohenberger, S.: Practical Adaptive Oblivious Transfer from Simple Assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)

    Google Scholar 

  18. Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.) STOC, pp. 20–31. ACM (1988)

    Google Scholar 

  19. Kurosawa, K., Nojima, R., Phong, L.T.: Efficiency-Improved Fully Simulatable Adaptive OT under the DDH Assumption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 172–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Lindell, A.Y.: Efficient Fully-Simulatable Oblivious Transfer. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Lindell, Y.: Lower bounds and impossibility results for concurrent self composition. J. Cryptology 21(2), 200–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lindell, Y., Oxman, E., Pinkas, B.: The IPS Compiler: Optimizations, Variants and Concrete Efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)

    Google Scholar 

  23. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) SODA, pp. 448–457. ACM/SIAM (2001)

    Google Scholar 

  24. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology 18(1), 1–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pass, R.: Simulation in Quasi-Polynomial Time, and its Application to Protocol Composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Pass, R., Venkitasubramaniam, M.: On Constant-Round Concurrent Zero-Knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Pass, R., Wee, H.: Black-Box Constructions of Two-Party Protocols from One-Way Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Google Scholar 

  29. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375. IEEE Computer Society (2002)

    Google Scholar 

  30. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) STOC, pp. 242–251. ACM (2004)

    Google Scholar 

  31. Rabin, M.O.: How to exchange secrets by oblivious transfer. Tech. rep., TR-81, Harvard Aiken Computation Laboratory (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiyoshima, S., Manabe, Y., Okamoto, T. (2012). Efficient Concurrent Oblivious Transfer in Super-Polynomial-Simulation Security. In: Hanaoka, G., Yamauchi, T. (eds) Advances in Information and Computer Security. IWSEC 2012. Lecture Notes in Computer Science, vol 7631. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34117-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34117-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34116-8

  • Online ISBN: 978-3-642-34117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics