Advertisement

Compressed Suffix Trees for Repetitive Texts

  • Andrés Abeliuk
  • Gonzalo Navarro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7608)

Abstract

We design a new compressed suffix tree specifically tailored to highly repetitive text collections. This is particularly useful for sequence analysis on large collections of genomes of the close species. We build on an existing compressed suffix tree that applies statistical compression, and modify it so that it works on the grammar-compressed version of the longest common prefix array, whose differential version inherits much of the repetitiveness of the text.

Keywords

Compression Method Text Collection Lower Common Ancestor Statistical Compressibility Range Minimum Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostolico, A.: The myriad virtues of subword trees, pp. 85–96. Combinatorial Algorithms on Words. NATO ISI Series. Springer (1985)Google Scholar
  2. 2.
    Brisaboa, N.R., Ladra, S., Navarro, G.: Directly Addressable Variable-Length Codes. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 122–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Cánovas, R., Navarro, G.: Practical Compressed Suffix Trees. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 94–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Claude, F., Fariña, A., Martínez-Prieto, M., Navarro, G.: Compressed q-gram indexing for highly repetitive biological sequences. In: Proc. 10th BIBE, pp. 86–91 (2010)Google Scholar
  5. 5.
    Claude, F., Navarro, G.: Self-indexed Text Compression Using Straight-Line Programs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes: From theory to practice. ACM J. Exp. Algor. 13, article 12 (2009)Google Scholar
  7. 7.
    Fischer, J.: Wee LCP. Inf. Proc. Lett. 110, 317–320 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix trees. Theor. Comp. Sci. 410(51), 5354–5364 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gog, S.: Compressed Suffix Trees: Design, Construction, and Applications. Ph.D. thesis, Univ. of Ulm, Germany (2011)Google Scholar
  10. 10.
    González, R., Navarro, G.: Compressed Text Indexes with Fast Locate. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)Google Scholar
  12. 12.
    Kreft, S.: Self-index based on LZ77. Master’s thesis, Univ. of Chile (2010), arXiv:1112.4578v1Google Scholar
  13. 13.
    Kreft, S., Navarro, G.: Self-indexing Based on LZ77. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kurtz, S.: Reducing the space requirements of suffix trees. Report 98-03, Technische Fakultät, Univ. Bielefeld, Germany (1998)Google Scholar
  15. 15.
    Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. of the IEEE 88(11), 1722–1732 (2000)CrossRefGoogle Scholar
  16. 16.
    Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. Nordic J. Comp. 12(1), 40–66 (2005)Google Scholar
  17. 17.
    Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)CrossRefGoogle Scholar
  18. 18.
    Manber, U., Myers, E.: Suffix arrays: a new method for on-line string searches. SIAM J. Comp., 935–948 (1993)Google Scholar
  19. 19.
    Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–430 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    McCreight, E.: A space-economical suffix tree construction algorithm. J. ACM 32(2), 262–272 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1), article 2 (2007)Google Scholar
  23. 23.
    Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 322–333. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)Google Scholar
  25. 25.
    Russo, L., Navarro, G., Oliveira, A.: Fully-compressed suffix trees. ACM Trans. Alg. 7(4), article 53 (2011)Google Scholar
  26. 26.
    Sadakane, K.: Compressed suffix trees with full functionality. Theor. Comp. Sys. 41(4), 589–607 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Weiner, P.: Linear pattern matching algorithms. In: IEEE Symp. Swit. and Aut. Theo., pp. 1–11 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrés Abeliuk
    • 1
    • 2
  • Gonzalo Navarro
    • 1
  1. 1.Department of Computer ScienceUniversity of ChileChile
  2. 2.Instituto de Filosofía y Ciencias de la Complejidad, IFICCUniversity of ChileChile

Personalised recommendations