Clustering Heterogeneous Data with Mutual Semi-supervision

  • Artur Abdullin
  • Olfa Nasraoui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7608)


We propose a new methodology for clustering data comprising multiple domains or parts, in such a way that the separate domains mutually supervise each other within a semi-supervised learning framework. Unlike existing uses of semi-supervised learning, our methodology does not assume the presence of labels from part of the data, but rather, each of the different domains of the data separately undergoes an unsupervised learning process, while sending and receiving supervised information in the form of data constraints to/from the other domains. The entire process is an alternation of semi-supervised learning stages on the different data domains, based on Basu et al.’s Hidden Markov Random Fields (HMRF) variation of the K-means algorithm for semi-supervised clustering that combines the constraint-based and distance-based approaches in a unified model. Our experiments demonstrate a successful mutual semi-supervision between the different domains during clustering, that is superior to the traditional heterogeneous domain clustering baselines consisting of converting the domains to a single domain or clustering each of the domains separately.


mixed data type clustering heterogeneous data clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdullin, A., Nasraoui, O.: A semi-supervised learning framework to cluster mixed data types. In: Proceedings of KDIR 2012 - International Conference on Knowledge Discovery and Information Retrieval (2012)Google Scholar
  2. 2.
    Al-Razgan, M., Domeniconi, C.: Weighted clustering ensembles. In: Proc. of the 6th SIAM ICML (2006)Google Scholar
  3. 3.
    Basu, S., Banerjee, A., Mooney, R.: Semi-supervised clustering by seeding. In: Proc. of 19th ICML (2002)Google Scholar
  4. 4.
    Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 59–68 (2004)Google Scholar
  5. 5.
    Cohn, D., Caruana, R., Mccallum, A.: Semi-supervised clustering with user feedback. Tech. rep. (2003)Google Scholar
  6. 6.
    Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42, 143–175 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Ester, M., Peter Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the Second International Conference on KDD, pp. 226–231 (1996)Google Scholar
  8. 8.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010)Google Scholar
  9. 9.
    Ganti, V., Gehrke, J., Ramakrishnan, R.: Cactus - clustering categorical data using summaries. In: Proc. of the 5th ACM SIGKDD International Conference on KDD, pp. 73–83 (1999)Google Scholar
  10. 10.
    Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: Clustering ensembles techniques (2009)Google Scholar
  11. 11.
    Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical attributes. Information Systems 25, 345–366 (2000)CrossRefGoogle Scholar
  12. 12.
    Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Research Issues on KDD, pp. 1–8 (1997)Google Scholar
  13. 13.
    Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2, 283–304 (1998)CrossRefGoogle Scholar
  14. 14.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proc. of the 5th Berkeley Symposium on Math. Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  15. 15.
    Plant, C., Böhm, C.: Inconco: interpretable clustering of numerical and categorical objects. In: Proc. of the 17th ACM SIGKDD International Conference on KDD, pp. 1127–1135 (2011)Google Scholar
  16. 16.
    Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)zbMATHCrossRefGoogle Scholar
  17. 17.
    Strehl, A., Strehl, E., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering. In: Workshop on AI for Web Search, pp. 58–64 (2000)Google Scholar
  18. 18.
    Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Proc. of the 18th ICML, pp. 577–584 (2001)Google Scholar
  19. 19.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems 15, pp. 505–512. MIT Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Artur Abdullin
    • 1
  • Olfa Nasraoui
    • 1
  1. 1.Knowledge Discovery & Web Mining Lab, Department of Computer Engineering and Computer ScienceUniversity of LouisvilleLouisvilleUSA

Personalised recommendations