Temporal Web Image Retrieval

  • Gaël Dias
  • José G. Moreno
  • Adam Jatowt
  • Ricardo Campos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7608)

Abstract

Temporal Web Image Retrieval can be defined as the process that retrieves sets of Web images with their temporal dimension from explicit or implicit temporal text queries. Supposing that (a) the temporal dimension is included in image indexing and (b) the query is explicitly expressed with a time tag (e.g. “Fukushima 2011”), the retrieval task can be straightforward as image retrieval has been studied for several years with success. However, text queries are usually implicit in time (e.g. “Second World War”) and automatically capturing the time dimension included in Web images is a challenge that has not been studied so far to the best of our knowledge. In this paper, we will discuss different research issues about Temporal Web Image Retrieval and the current progresses of our research in temporal ephemeral clustering and temporal image filtering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, O., Gertz, M., Baeza-Yates, R.: Clustering and exploring search results using timeline constructions. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM 2009), pp. 97–106 (2009)Google Scholar
  2. 2.
    Metzler, D., Jones, R., Peng, F., Zhang, R.: Improving search relevance for implicitly temporal queries. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009), pp. 700–701 (2009)Google Scholar
  3. 3.
    Lux, M., Chatzichristofis, S.A.: Lire: Lucene image retrieval: An extensible java cbir library. In: Proceedings of the 16th ACM International Conference on Multimedia (ACMMM 2008), pp. 1085–1088 (2008)Google Scholar
  4. 4.
    Au Yeung, C., Jatowt, A.: Studying how the past is remembered: Towards computational history through large scale text mining. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM 2011), pp. 1231–1240 (2011)Google Scholar
  5. 5.
    Dias, G., Campos, R., Jorge, A.: Future retrieval: What does the future talk about? In: Proceedings of Workshop on Enriching Information Retrieval of the 34th ACM Annual SIGIR Conference, SIGIR 2011 (2011)Google Scholar
  6. 6.
    Campos, R., Dias, G., Jorge, A.M., Nunes, C.: Gte: A distributional second-order co-occurrence approach to improve the identification of top relevant dates in web snippets. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012 (2012)Google Scholar
  7. 7.
    Ferragina, P., Scaiella, U.: Tagme: On-the-fly annotation of short text fragments (by wikipedia entities). In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010), pp. 1625–1628 (2010)Google Scholar
  8. 8.
    Hoffart, J., Suchanek, F., Berberich, K., Lewis-Kelham, E., de Melo, G., Weikum, G.: Yago2: Exploring and querying world knowledge in time, space, context, and many languages. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 229–232 (2011)Google Scholar
  9. 9.
    Moreno, J., Dias, G.: Using ephemeral clustering and query logs to organize web image search results on mobile devices. In: Proceedings of the International ACM Workshop on Interactive Multimedia on Mobile and Portable Devices of the ACM Multimedia Conference (ACMMM), pp. 33–38 (2011)Google Scholar
  10. 10.
    Coe, B.: Guide to Early Photographic Processes. Victoria & Albert Museum (1983)Google Scholar
  11. 11.
    Scalise, A., Blose, A.: Dating images from scanned watermarks. Technical report, Patent US 2010/0329575 (2010)Google Scholar
  12. 12.
    Cieplinski, L.: MPEG-7 Color Descriptors and Their Applications. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 11–20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Chatzichristofis, S.A., Boutalis, Y.S.: Fcth: Fuzzy color and texture histogram - a low level feature for accurate image retrieval. In: Proceedings of the 2008 9th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2008), pp. 191–196 (2008)Google Scholar
  14. 14.
    Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Strötgen, J., Alonso, O., Gertz, M.: Identification of top relevant temporal expressions in documents. In: Proceedings of the 2nd Temporal Web Analytics Workshop (TempWeb 2012) Associated to the 2012 World Wide Web Conference (WWW 2012), pp. 33–40 (2012)Google Scholar
  16. 16.
    Krapac, J., Moray, A., Verbeek, J., Jurie, F.: Improving web-image search results using query-relative classifiers. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition (CVPR 2010), pp. 1094–1101 (2010)Google Scholar
  17. 17.
    Tollari, S., Detyniecki, M., Marsala, C., Fakeri-Tabrizi, A., Amini, M.-R., Gallinari, P.: Exploiting Visual Concepts to Improve Text-Based Image Retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 701–705. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Usunier, N., Amini, M.-R., Goutte, C.: Multiview Semi-supervised Learning for Ranking Multilingual Documents. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 443–458. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gaël Dias
    • 1
    • 4
  • José G. Moreno
    • 1
  • Adam Jatowt
    • 2
  • Ricardo Campos
    • 3
    • 4
  1. 1.Université de Caen Basse-Normandie, UMR 6072 GREYCCaenFrance
  2. 2.Kyoto University and Japan Science and Technology AgencyJapan
  3. 3.Polytechnic Institute of Tomar and LIAAD-INESC TECPortugal
  4. 4.Center of MathematicsUniversity of Beira InteriorPortugal

Personalised recommendations