Skip to main content

Data Stability in Clustering: A Closer Look

  • Conference paper
Algorithmic Learning Theory (ALT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7568))

Included in the following conference series:

Abstract

We consider the model introduced by Bilu and Linial [12],, who study problems for which the optimal clustering does not change when distances are perturbed. They show that even when a problem is NP-hard, it is sometimes possible to obtain efficient algorithms for instances resilient to certain multiplicative perturbations, e.g. on the order of \(O(\sqrt{n})\) for max-cut clustering. Awasthi et al. [6], consider center-based objectives, and Balcan and Liang [9], analyze the k-median and min-sum objectives, giving efficient algorithms for instances resilient to certain constant multiplicative perturbations.

Here, we are motivated by the question of to what extent these assumptions can be relaxed while allowing for efficient algorithms. We show there is little room to improve these results by giving NP-hardness lower bounds for both the k-median and min-sum objectives. On the other hand, we show that multiplicative resilience parameters, even only on the order of Θ(1), can be so strong as to make the clustering problem trivial, and we exploit these assumptions to present a simple one-pass streaming algorithm for the k-median objective. We also consider a model of additive perturbations and give a correspondence between additive and multiplicative notions of stability. Our results provide a close examination of the consequences of assuming, even constant, stability in data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. Journal of Machine Learning Research - Proceedings Track 5, 1–8 (2009)

    Google Scholar 

  2. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: NIPS (2009)

    Google Scholar 

  3. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for euclidean-medians and related problems. In: STOC, pp. 106–113 (1998)

    Google Scholar 

  4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awasthi, P., Blum, A., Sheffet, O.: Stability yields a ptas for k-median and k-means clustering. In: FOCS, pp. 309–318 (2010)

    Google Scholar 

  6. Awasthi, P., Blum, A., Sheffet, O.: Center-based clustering under perturbation stability. Inf. Process. Lett. 112(1-2), 49–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balcan, M.F., Blum, A., Gupta, A.: Approximate clustering without the approximation. In: SODA (2009)

    Google Scholar 

  8. Balcan, M.F., Blum, A., Vempala, S.: A discriminative framework for clustering via similarity functions. In: STOC, pp. 671–680 (2008)

    Google Scholar 

  9. Balcan, M.F., Liang, Y.: Clustering under Perturbation Resilience. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 63–74. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum -clustering in metric spaces. In: STOC, pp. 11–20 (2001)

    Google Scholar 

  11. Ben-David, S.: Alternative Measures of Computational Complexity with Applications to Agnostic Learning. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 231–235. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Bilu, Y., Linial, N.: Are stable instances easy? In: Innovations in Computer Science, pp. 332–341 (2010)

    Google Scholar 

  13. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering problems. In: STOC, pp. 30–39 (2003)

    Google Scholar 

  15. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes for clustering problems. In: STOC, pp. 50–58 (2003)

    Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  17. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. J. Algorithms 31(1), 228–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: Theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528 (2003)

    Article  Google Scholar 

  19. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: STOC, pp. 731–740. ACM (2002)

    Google Scholar 

  20. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clustering problems in any dimensions. J. ACM 57(2) (2010)

    Google Scholar 

  21. Lloyd, S.: Least squares quantization in pcm. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Muthukrishnan, S.: Data streams: algorithms and applications. In: SODA, p. 413 (2003)

    Google Scholar 

  23. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of lloyd-type methods for the k-means problem. In: FOCS, pp. 165–176 (2006)

    Google Scholar 

  24. Schalekamp, F., Yu, M., van Zuylen, A.: Clustering with or without the Approximation. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 70–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into Triangles on Bounded Degree Graphs. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 558–569. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reyzin, L. (2012). Data Stability in Clustering: A Closer Look. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2012. Lecture Notes in Computer Science(), vol 7568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34106-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34106-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34105-2

  • Online ISBN: 978-3-642-34106-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics