Modeling and Control of a Lower-Limb Rehabilitation Robot

  • Yanjiao Ma
  • Wei He
  • Shuzhi Sam Ge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7621)


This paper proposes a lower-limb rehabilitation robot. It assists patients suffering from hemiplegic to recover the hurt leg by walking in a gait trajectory. A single-side mechanical structure is designed, which is driven by the pneumatic muscles. For further research, we build a simplified 2-DOF dynamic model with the Lagrange method. PD control and adaptive control strategies are developed with stability analysis demonstrating that both methods are stable and effective. At last, we achieve the tracking performances of the robot model in both control strategies by simulation results.


rehabilitation robot modeling adaptive control Lagrange method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans. Rehabil. Eng. 13, 380–394 (2005)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Kawamoto, H., Sankai, Y.: Power Assist System HAL-3 for Gait Disorder Person. In: Miesenberger, K., Klaus, J., Zagler, W.L. (eds.) ICCHP 2002. LNCS, vol. 2398, pp. 196–203. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Veneman, J.F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., Van Asseldonk, E.H.F., Van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)CrossRefGoogle Scholar
  5. 5.
    Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics 11, 128–138 (2006)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Malcolm, P., Segers, V., Caekenberghe, I.V., Clercq, D.D.: Experimental study of the influence of the m.tibialis anterior on the walk-to-run transition by means of a powered ankle-foot exoskeleton. Gait Posture 29, 6–10 (2009)CrossRefGoogle Scholar
  9. 9.
    Homma, K., Fukuda, O., Nagata, Y.: Study of a wire-driven leg rehabilitation system. In: Proceeding of Sixth International Conference on Intelligent Robots and Systems, pp. 1451–1456 (2002)Google Scholar
  10. 10.
    Bradley, D., Marquez, C., Hawley, M., Brownsell, S., Enderby, P., Mawson, S.: NeXOS the design, development, and evaluation of a rehabilitation system for the lower limbs. Mechatronics 19, 247–257 (2009)CrossRefGoogle Scholar
  11. 11.
    Moughamir, S., Zaytoon, J., Manamanni, N., Afilal, L.: A system approach for control development of lower limbs training machines. Control Eng. Pract. 10, 287–299 (2002)CrossRefGoogle Scholar
  12. 12.
    Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. World Scientific, London (1998)CrossRefGoogle Scholar
  13. 13.
    LaSalle, J.P.: Stability Theory for Difference Equations. Journal of Differential Equations 4(2), 57–65 (1968)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Craig, J.: Adaptive Control of Mechanical Manipulators. Addison Wesley, Reading (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yanjiao Ma
    • 1
  • Wei He
    • 1
  • Shuzhi Sam Ge
    • 2
    • 3
  1. 1.Robotics Institute and School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Robotics Institute and School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations