Advertisement

Combining Gait Research of the Quadruped/Biped Reconfigurable Walking Chair with Parallel Leg Mechanism

  • Xing Hu
  • Hongbo Wang
  • Lingfeng Sang
  • Qifang Gu
  • Lin Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7621)

Abstract

The quadruped/biped reconfigurable walking robot with parallel leg mechanism can realize not only the quadruped walking, but also the biped walking. The converting process from the quadruped to the biped includes locking the vertical revolute pair hinged with the upper platform and combining the corresponding lower platforms. Based on the previous study, the combining schemes of walking chair are researched in this paper, and then the correctness of the combining schemes is analyzed by using the position workspace of the swing leg and the body mechanism in different states which are obtained by the MATLAB software and anti-solution search method. Compared with the stability margin and the adjustment coordination of the body in the different combining schemes, the optimal combining gaits of walking chair are selected, which lays the theoretical foundation for the quadruped/biped converting control of walking chair.

Keywords

walking chair parallel leg mechanism combining gait reconfigurable walking robot optimal gaits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, D.H., Tong, J., Li, C.H., Zhang, S.J., Chen, B.C.: A Review of Man and Animal Gait and Walking Robot. Journal of Jilin University 33(4), 121–125 (2003)Google Scholar
  2. 2.
    McGhee, R.B.: Some Finite State Aspects of Legged Locomotion. Mathematical Biosciences 2(1-2), 67–84 (1968)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hirose, S., Martins, F.: Generalized Standard Leg Trajectory for Quadruped Walking Vehicle. Transactions of the Society of Instrument and Control Engineers 25(4), 455–461 (1989)Google Scholar
  4. 4.
    Song, S.M., Zhang, C.D.: A Study of the Stability of Generalized Wave Gaits. Mathematical Biosciences 115(1), 1–32 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Song, S.M., Zhang, C.D.: Turning Gait of a Quadruped Walking Machine. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2106–2112 (1991)Google Scholar
  6. 6.
    Pal, P.K., Jayarajan, K.: Generation of Free Gait - A Graph Search Approach. IEEE Transactions on Robotics and Automation 7(3), 299–305 (1991)CrossRefGoogle Scholar
  7. 7.
    Pack, D.J., Kak, A.C.: A Simplified Forward Gait Control for a Quadruped Walking Robot. In: Proceedings of the 1994 IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, German, vol. 2, pp. 1011–1018 (1994)Google Scholar
  8. 8.
    Pack, D.J., Kang, H.: An Omnidirectional Gait Control using a Graph Search Method for a Quadruped Walking Robot. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Aichi, Japan, vol. 1, pp. 988–993 (1995)Google Scholar
  9. 9.
    Hugel, V., Blazvic, P.: Towards Efficient Implementation of Quadruped Gaits with Duty Factor of 0.75. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, USA, vol. 3, pp. 2360–2365 (1999)Google Scholar
  10. 10.
    Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving Robust Gaits with AIBO. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, California, vol. 3, pp. 3040–3045 (2000)Google Scholar
  11. 11.
    Wang, J.S., Zhang, B.P.: Comprehensive Double Three Feet Walking Robot (II)-Walk Mode Planning. Journal of Tsinghua University (Nature Science) 34(5), 63–71 (1994)Google Scholar
  12. 12.
    Pan, J.M., Cheng, J.S.: The Research of Slope Movement of Quadruped Walking Robot. Robots 13(4), 22–26 (1991)Google Scholar
  13. 13.
    Fang, Y.B., Jiang, C.C.: The Research of Pacing Gait and Dynamic Walking of Quadruped Robot. Robots 17(1), 134–136 (1995)MathSciNetGoogle Scholar
  14. 14.
    Yu, L.Q., Wu, C.L., Ma, S.P.: Study on Gait Transition between Symmetrical Gaits of Quadrupeds Based on Timing Sequence Analysis. Journal of Huazhong University of Science and Technology 34(9), 32–34 (2006)Google Scholar
  15. 15.
    Gan, J.G., Zhu, W., Gan, G.Y.: Follow-the-leader Gait Study for Six-legged Walking Vehicle. Robots 16(4), 234–236 (1994)Google Scholar
  16. 16.
    Zhao, T.S., Zhao, Y.S., Huang, Z.: The Flexibility of Walking Machine Imitating a Crab. China Mechanical Engineering 9(3), 55–57 (1998)Google Scholar
  17. 17.
    Yu, S.M., Ma, S.G., Li, B., Wang, Y.C.: Gait Generation and Analysis for Snake-like Robots. Robots 33(3), 371–378 (2011)CrossRefGoogle Scholar
  18. 18.
    Qi, Z.Y., Wang, H.B., Huang, Z., Zhang, L.L.: Kinematics of a Quadruped/Biped Reconfigurable Walking Robot with Parallel Leg Mechanisms. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, pp. 558–564. King’s College, London (2009)Google Scholar
  19. 19.
    Wang, H.B., Qi, Z.Y., Xu, G.L., Xi, F.F., Hu, G.Q., Huang, Z.: Kinematics Analysis and Motion Simulation of a Quadruped Walking Robot with Parallel Leg Mechanism. The Open Mechanical Engineering Journal 4, 77–85 (2010)Google Scholar
  20. 20.
    Wang, H.B., Qi, Z.Y., Hu, Z.W., Huang, Z.: Application of Parallel Leg Mechanisms in Quadruped/Biped Reconfigurable Walking Robot. Journal of Mechanical Engineering 45(8), 24–30 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xing Hu
    • 1
  • Hongbo Wang
    • 2
  • Lingfeng Sang
    • 2
  • Qifang Gu
    • 3
  • Lin Yuan
    • 2
  1. 1.School of Mechanical and Electrical EngineeringXi’an University of Architecture and TechnologyXi’anP.R. China
  2. 2.The Ministry of Education Key Laboratory of Advanced Forging Technology and Science, and Hebei Province Key Laboratory of Parallel Robot and Mechatronics SystemsYanshan UniversityQinhuangdaoP.R. China
  3. 3.The Department of ComputerWuxi City College of Vocational TechnologyWuxiP.R.China

Personalised recommendations