Advertisement

A Multi-path Selecting Navigation Framework with Human Supervision

  • Peng Liu
  • Guangming Xiong
  • Haojie Zhang
  • Yan Jiang
  • Jianwei Gong
  • Huiyan Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7621)

Abstract

Robotic navigation remains one of the fundamental problems of mobile robotics, especially when some uncertain variables need to be considered. The cost function of the path planning algorithm cannot always represent the optimum path of the task completely in some multi-choice environments. In this paper, an interaction framework was designed for multiple path selection, supervised by an operator with an intuitive user interface. An interaction approach based on inquiry message was proposed to release the workload impact on human operator. A path priority function was presented to guarantee the multiple path selection. Simulation and experiments on Pioneer 3 AT robot showed good performance of our multi-path selecting navigation system when the operator’s experiential cogitation need to be considered in path selection.

Keywords

multi-path selection human supervision path priority inquiry message 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, G., Chun, W.: Navigation Behavior Selection Using Generalized Stochastic Petri Nets for a Service Robot. IEEE Trans. Syst. Man Cybern. Pt C Appl. Rev. 37, 494–503 (2007)CrossRefGoogle Scholar
  2. 2.
    Seok, J.-H., Lee, J.-Y.: Diverse Multi-path Planning with a Path-set Costmap. In: 2011 International Conference on Control, Automation and Systems, pp. 694–699. IEEE Press, South Korea (2011)Google Scholar
  3. 3.
    Bell, M.: Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation. Transp. Res. Part B 43, 97–107 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Bell, M.: Reliable pretrip multipath planning and dynamic adaptation for a centralized road navigation system. IEEE Trans. Intell. Transp. Syst. 8, 14–20 (2007)CrossRefGoogle Scholar
  5. 5.
    Dixon, S.R., Wickens, C.D.: Mission Control of Multiple Unmanned Aerial Vehicles: a Workload Analysis. Hum. Factors 47, 479–487 (2005)CrossRefGoogle Scholar
  6. 6.
    Cheng, G., Zelinsky, A.: Supervised Autonomy: A Framework For Human-Robot Systems Development. In: 1999 IEEE International Conference on Systems, Man, and Cybernetics, pp. 971–975. IEEE Press, Tokyo (1999)Google Scholar
  7. 7.
    Zigoris, P., Siu, J.: Balancing Automated Behavior and Human Control in Multi-Agent System: A Case Study in Roboflag. In: Proceedings of the 2003 American Control Conference, pp. 667–671. IEEE Press, Denver (2003)CrossRefGoogle Scholar
  8. 8.
    Chamberlain, L., Tang, J.: A Behavioral Architecture for Strategy Execution in the Roboflag Game. In: Proceedings of 2003 American Control Conference, pp. 672–677. IEEE Press, Denver (2003)CrossRefGoogle Scholar
  9. 9.
    Cummings, M.L., How, J.P.: The Impact of Human-Automation Collaboration in Decentralized Multiple Unmanned Vehicle Control. Proc. IEEE 100, 660–671 (2012)CrossRefGoogle Scholar
  10. 10.
    Coppin, G., Legras, F.: Autonomy Spectrum and Performance Perception Issues in Swarm Supervisory Control. Proc. IEEE 100, 590–603 (2012)CrossRefGoogle Scholar
  11. 11.
    Bradshaw, J.M., Feltovich, P.J., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions of Adjustable Autonomy and Mixed-Initiative Interaction. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 17–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Myers, K.L.: Advisable Planning Systems. In: ARPI 1996 Proceedings, pp. 206–209. AAAI Press (1996)Google Scholar
  13. 13.
    Myers, K.L.: Domain Metatheories: Enabling User-Centric Planning. In: Proceedings of Representational Issues for Real-World Planning Systems, pp. 67–72. AAAI Press, Austin (2000)Google Scholar
  14. 14.
    Goldman, R.P., Haigh, K.Z.: MACBeth; A Multi-Agent Constraint-Based Planner. In: Proceedings of Constraints and AI Planning, pp. 11–17. AAAI Press, Austin (2000)Google Scholar
  15. 15.
    Tambe, M.: Teamwork in Real-World, Dynamic Environments. In: Proceedings of ICMAS 1996: 2nd International Conference on Multiagent Systems, pp. 361–368. AAAI Press, Kyoto (1996)Google Scholar
  16. 16.
    Bhattacharya, S., Kumar, V.: Search-Based Path Planning with Homotopy Class Constraints. Proc. Natl Conf. Artif. Intell. 2, 1230–1237 (2010)Google Scholar
  17. 17.
    Fong, T., Grange, S.: Multi-Robot Remote Driving with Collaborative Control. In: Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication, pp. 237–242. IEEE Press, Bordeaux (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peng Liu
    • 1
  • Guangming Xiong
    • 1
  • Haojie Zhang
    • 1
  • Yan Jiang
    • 1
  • Jianwei Gong
    • 1
  • Huiyan Chen
    • 1
  1. 1.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations