HRI Evaluation of a Healthcare Service Robot

  • I-Han Kuo
  • Chandimal Jayawardena
  • Elizabeth Broadbent
  • Rebecca Q. Stafford
  • Bruce A. MacDonald
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7621)

Abstract

This paper presents the evaluation of a healthcare service robot system with vital signs measurement and medication reminders. The design followed the methodology proposed in [7]. This study is a first step to evaluate the methodology by measuring the effectiveness of the interaction patterns designed. The results show that the interaction design patterns could be validated and improved. One can easily reuse these patterns for another service application. This indicates the usefulness of the methodology in: (a) fostering research and development for creating interactive service robots; and (b) helping HRI designers further improve robots’ interactivity, for perceiving and expressing interaction/social cues. Overall, the robot system performed robustly for about six hours every day for over two weeks. Videos of the users’ approaching behaviours (use cases) were also analysed for future improvements on robot’s interactivity to engage potential users in a public space.

Keywords

service robotics HRI evaluation interaction cue social cue design pattern presence detection user’s attention face detection and recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta, C., Yang, H.Y., Tiwari, P., Kuo, I.H., Macdonald, B.A.: End User Program- ming to Enable Closed-loop Medication Management Using a Healthcare Robot. Social ScienceGoogle Scholar
  2. 2.
    Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)Google Scholar
  3. 3.
    Glas, D.F., Miyashita, T., Ishiguro, H., Hagita, N.: Robopal: Modeling Role Transitions in Human-Robot Interaction. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2130–2137. IEEE (April 2007)Google Scholar
  4. 4.
    Huttenrauch, H., Eklundh, K.: Fetch-and-carry with CERO: observations from a long-term user study with a service robot. In: Proceedings of the 11th IEEE International Workshop on Robot and Human Interactive Communication, pp. 158–163. IEEE (2002)Google Scholar
  5. 5.
    Jayawardena, C., Kuo, I.H., Unger, U., Igic, A., Wong, R., Watson, C.I., Stafford, R.Q., Broadbent, E., Tiwari, P., Warren, J., Sohn, J., MacDonald, B.A.: Deployment of a service robot to help older people. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5990–5995. IEEE (October 2010)Google Scholar
  6. 6.
    Kahn, P.H., Freier, N.G., Kanda, T., Ishiguro, H., Ruckert, J.H., Severson, R.L., Kane, S.K.: Design patterns for sociality in human-robot interaction. ACM Press, New York (2008)Google Scholar
  7. 7.
    Kuo, I.H., Jayawardena, C., Broadbent, E., MacDonald, B.A.: Multidisciplinary Design Approach for Implementation of Interactive Services. International Journal of Social Robotics 3(4), 443–456 (2011)CrossRefGoogle Scholar
  8. 8.
    Kuo, I.H., Jayawardena, C., Tiwari, P., Broadbent, E., MacDonald, B.A.: User Identification for Healthcare Service Robots: Multidisciplinary Design for Implementation of Interactive Services. In: Ge, S.S., Li, H., Cabibihan, J.-J., Tan, Y.K. (eds.) ICSR 2010. LNCS, vol. 6414, pp. 20–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Spool, J.: The Elements of a Design Pattern. Academic Press (2006), http://www.uie.com/articles/elements_of_a_design_pattern/
  10. 10.
    Stafford, R.Q., MacDonald, B.A., Jayawardena, C., Wegner, D.M., Broadbent, E.: Does the robot have a mind of its own? Predictors of healthcare robot use in a retirement village. Manuscript submitted for publication (2012)Google Scholar
  11. 11.
    Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., Goodrich, M.: Common metrics for human-robot interaction. In: Proceeding of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2006, p. 33 (2006)Google Scholar
  12. 12.
    Tapus, A., Matarić, M.: User Personality Matching with a Hands-Off Robot for Post-stroke Rehabilitation Therapy. In: Experimental Robotics 2006, pp. 165–175 (July 2006)Google Scholar
  13. 13.
    Tapus, A., Mataric, M., Scassellati, B.: Socially assistive robotics (Grand Challenges of Robotics). IEEE Robotics Automation Magazine 14(1), 35–42 (2007)CrossRefGoogle Scholar
  14. 14.
    Xu, M., Akatsuka, T.: Detecting head pose from stereo image sequence for active face recognition. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 82–87. IEEE (1998)Google Scholar
  15. 15.
    Yun, W.H., Kim, D., Song, B.Y., Yoon, H.S.: Face recognition using HOG features. In: The 5th International Conference on Ubiquitous Robots and Ambient Intelligence, No. Urai (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • I-Han Kuo
    • 1
  • Chandimal Jayawardena
    • 2
  • Elizabeth Broadbent
    • 3
  • Rebecca Q. Stafford
    • 3
  • Bruce A. MacDonald
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of AucklandNew Zealand
  2. 2.Department of ComputingUnitec Institute of TechnologyNew Zealand
  3. 3.Psychological MedicineUniversity of AucklandNew Zealand

Personalised recommendations