Skip to main content

Equi-affine Invariant Geometries of Articulated Objects

  • Conference paper
Outdoor and Large-Scale Real-World Scene Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7474))

  • 1378 Accesses

Abstract

We introduce an (equi-)affine invariant geometric structure by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of an affine invariant metric enables us to evaluate a new form of geodesic distances and to construct an invariant Laplacian from which local and global diffusion geometry is constructed. Applications of the proposed framework demonstrate its power in generalizing and enriching the existing set of tools for shape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bérard, P., Besson, G., Gallot, S.: Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis 4, 373–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bronstein, A., Bronstein, M., Kimmel, R.: Efficient computation of isometry-invarient distances between surfaces. SIAM J. Scientific Computing 28(5), 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L.J., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patané, G., Spagnuolo, M., Toldo, R.: SHREC 2010: robust large-scale shape retrieval benchmark. In: Proc. 3DOR (2010)

    Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant face recognition via spherical embedding. In: Proc. Int’l Conf. Image Processing (ICIP), vol. 3, pp. 756–759 (2005)

    Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Scientific Computing 28, 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances with spectral distances. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 33, 1065–1071 (2011)

    Article  Google Scholar 

  8. Buchin, S.: Affine differential geometry. Science Press, Beijing (1983)

    MATH  Google Scholar 

  9. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate studies in mathematics, vol. 33. American Mathematical Society (2001)

    Google Scholar 

  10. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dierkes, U., Hildebrandt, S., Kuster, A., Wohlrab, O.: Minimal Surfaces I. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  12. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, pp. 142–155 (1988)

    Google Scholar 

  13. Elad, A., Keller, Y., Kimmel, R.: Texture mapping via spherical multi-dimensional scaling. In: Proc. Scale-Space Theories in Computer Vision, pp. 443–455 (2005)

    Google Scholar 

  14. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 25, 1285–1295 (2003)

    Article  Google Scholar 

  15. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Proc. of the Symposium on Geometry Processing, pp. 1405–1413 (2009)

    Google Scholar 

  16. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. National Academy of Sciences (PNAS) 95, 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Volumetric heat kernel signatures. In: Proc. 3D Object recognition (3DOR), part of ACM Multimedia (2010)

    Google Scholar 

  19. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sapiro, G.: Diffusion symmetries of non-rigid shapes. In: Proc. International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2010)

    Google Scholar 

  20. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics 33, 381–390 (2009)

    Article  Google Scholar 

  21. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Symposium on Geometry Processing (SGP), pp. 225–233 (2007)

    Google Scholar 

  22. Schwartz, E.L., Shaw, A., Wolfson, E.: A numerical solution to the generalized mapmaker’s problem: flattening nonconvex polyhedral surfaces. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 11, 1005–1008 (1989)

    Article  Google Scholar 

  23. Sochen, N.: Affine-invariant flows in the Beltrami framework. Journal of Mathematical Imaging and Vision 20, 133–146 (2004)

    Article  MathSciNet  Google Scholar 

  24. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proc. Symposium on Geometry Processing (SGP) (2009)

    Google Scholar 

  25. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: Proc. ACM Transactions on Graphics (SIGGRAPH), pp. 553–560 (2005)

    Google Scholar 

  26. Yatziv, L., Bartesaghi, A., Sapiro, G.: O(N) implementation of the fast marching algorithm. J. Computational Physics 212, 393–399 (2006)

    Article  MATH  Google Scholar 

  27. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automatic Control 40, 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)

    Google Scholar 

  29. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant diffusion geometry of deformable 3D shapes. In: Proc. Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  30. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geodesic geometry of deformable 3D shapes. Computers & Graphics 35, 692–697 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N. (2012). Equi-affine Invariant Geometries of Articulated Objects. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34091-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34090-1

  • Online ISBN: 978-3-642-34091-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics