Traffic Observation and Situation Assessment

  • Ralf Reulke
  • Dominik Rueß
  • Kristian Manthey
  • Andreas Luber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7474)

Abstract

Utilization of camera systems for surveillance tasks (e. g. traffic monitoring) has become a standard procedure and has been in use for over 20 years. However, most of the cameras are operated locally and data analyzed manually. Locally means here a limited field of view and that the image sequences are processed independently from other cameras. For the enlargement of the observation area and to avoid occlusions and non-accessible areas multiple camera systems with overlapping and non-overlapping cameras are used. The joint processing of image sequences of a multi-camera system is a scientific and technical challenge. The processing is divided traditionally into camera calibration, object detection, tracking and interpretation. The fusion of information from different cameras is carried out in the world coordinate system. To reduce the network load, a distributed processing concept can be implemented.

Object detection and tracking are fundamental image processing tasks for scene evaluation. Situation assessments are based mainly on characteristic local movement patterns (e.g. directions and speed), from which trajectories are derived. It is possible to recognize atypical movement patterns of each detected object by comparing local properties of the trajectories. Interaction of different objects can also be predicted with an additional classification algorithm.

This presentation discusses trajectory based recognition algorithms for atypical event detection in multi object scenes to obtain area based types of information (e.g. maps of speed patterns, trajectory curvatures or erratic movements) and shows that two-dimensional areal data analysis of moving objects with multiple cameras offers new possibilities for situational analysis.

Keywords

Traffic observation multi-camera system cooperative distributed vision multi-camera orientation multi-target tracking situation assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Aziz, Y.I.: Photogrammetric Potential of Non Metric Cameras. PhD thesis, University of Illinois, Photogrammetric potential of non metric cameras (1974)Google Scholar
  2. 2.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation into object space coordinates in close-range photogrammetry. In: Symposium on CloseRange Photogrammetry, Urbana, Illinois, pp. 1–18 (1971)Google Scholar
  3. 3.
    Aköz, Ö., Elif Karsligil, M.: Video-based traffic accident analysis at intersection using partial vehicle trajectories. In: Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR 2010, p. 335 (2010)Google Scholar
  4. 4.
    Anderson, B., Moor, J.: Optimal filtering. Prentice-Hall, Inc., Enlewood Cliffs (1979)MATHGoogle Scholar
  5. 5.
    Basu, A., Licardie, S.: Alternative models for fish-eye lenses. Pattern Recognition 16(4), 433–441 (1995)CrossRefGoogle Scholar
  6. 6.
    Blackman, S.S.: Multiple-target tracking with radar applications. Artech House, MA (1986)Google Scholar
  7. 7.
    Brown, D.C.: Close range camera calibration. Photogrammetric Engineering 37(8), 855–866 (1971)Google Scholar
  8. 8.
    Brown, D.C.: An advanced plate reduction for photogrammetric cameras. Technical report, Air Force Cambridge Research Laboratories (1964)Google Scholar
  9. 9.
    Brown, D.C.: Decentering distortion of lenses. Photogrammetric Engineering 32(7), 444–462 (1965)Google Scholar
  10. 10.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  11. 11.
    Chiu, W.-Y., Tsai, D.-M.: A Macro-Observation Scheme for Abnormal Event Detection in Daily-Life Video Sequences. EURASIP Journal on Advances in Signal Processing 2010, 1–20 (2010)CrossRefGoogle Scholar
  12. 12.
    Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 213–219 (June 2005)Google Scholar
  13. 13.
    El-Hakim, S.F.: Real-time image meteorology with ccd cameras. Photogrammetric Engineering and Remote Sensing 52(11), 1757–1766 (1986)Google Scholar
  14. 14.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Forbes, A.B.: Least-squares best fit geometric elements. Technical report, National Physical Laboratory of Great Britain, NPL-report, DITC 140/89 (1989)Google Scholar
  16. 16.
    Fraser, C.S., Edmundson, K.L.: Design and implementation of a computational processing system for off-line digital close-range photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing 55(2), 94–104 (2000), doi:10.1016/S0924-2716(00)00010-1CrossRefGoogle Scholar
  17. 17.
    Gennery, D.B.: Generalized camera calibration including fish-eye lenses. International Journal of Computer Vision 68, 239–266 (2002)CrossRefGoogle Scholar
  18. 18.
    Heideklang, R.: Emplyoing a support vector machine to detect hazardous traffic situations, Student’s thesis, Humboldt-Universität zu Berlin (2011)Google Scholar
  19. 19.
    Heikkil, J.: A polynomial camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340 (2006)CrossRefGoogle Scholar
  20. 20.
    Javed, O., Shafique, K., Shah, M.: A hierarchical approach to robust background subtraction using color and gradient information. In: IEEE Workshop on Motion and Video Computing, p. 22 (2002)Google Scholar
  21. 21.
    Jiang, F., Wu, Y., Katsaggelos, A.K.: Abnormal Event Detection from Surveillance Video by Dynamic Hierarchical Clustering. In: 2007 IEEE International Conference on Image Processing, pp. 1:V – 145–V – 148 (2007)Google Scholar
  22. 22.
    Jiang, S., Ye, Q., Gao, W., Huang, T.: A new method to segment playfield and its applications in match analysis in sports video. In: MULTIMEDIA 2004: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 292–295. ACM Press, New York (2004)CrossRefGoogle Scholar
  23. 23.
    Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Tranactions. Pattern Analysis and Machine Intelligence 28, 1335–1340 (2006)CrossRefGoogle Scholar
  24. 24.
    Kraus, K.: Photogrammetrie 1, 7th edn. Gruyter Verlag (2004) ISBN-10: 3110177080, ISBN-13: 978-3110177084Google Scholar
  25. 25.
    Leykin, A., Tuceryan, M.: A vision system for automated customer tracking for marketing analysis: Low level feature extraction. In: International Workshop on Human Activity Recognition and Modeling, pp. 1–7 (2005)Google Scholar
  26. 26.
    Liscano, R., Green, D.: Design and implementation of a trajectory generator for an indoor mobile robot. In: Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems. Tsukuba, Japan, pp. 380–385 (1989)Google Scholar
  27. 27.
    Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close-Range Photogrammetry. Whittles Publishing (2006)Google Scholar
  28. 28.
    Ma, Y., Soatto, S., Košecká, J., Shankar Sastry, S.: An Invitation to 3-D Vision. Springer (2004)Google Scholar
  29. 29.
    Maggio, E., Cavallaro, A.: Video Tracking: Theory and Practice. John Wiley & Sons (2011)Google Scholar
  30. 30.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004); British Machine Vision Computing 2002CrossRefGoogle Scholar
  31. 31.
    McFarlane, N.J.B., Schofield, C.P.: Segmentation and tracking of piglets in images. Machine Vision and Applications 8(3), 187–193 (1995)CrossRefGoogle Scholar
  32. 32.
    Nelson, W.L.: Continuous steering-function control of robot carts. IEEE Transactions on Industrial Electronics 36(3), 330–337 (1989)CrossRefGoogle Scholar
  33. 33.
    Orekhov, V., Abidi, B., Broaddus, C., Abidi, M.: Universal camera calibration with automatic distortion model selection. In: IEEE International Conference on Image Processing, vol. 6, pp. 397–400 (2007)Google Scholar
  34. 34.
    Pfeiffer, D., Reulke, R.: Trajectory-based scene description and classification. In: Stilla, U., Rottensteiner, F., Paparoditis, N. (eds.) Object Extraction for 3D City Models, Road Databases and Traffic Monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, vol. 38, pp. 41–46 (2009)Google Scholar
  35. 35.
    Piciarelli, C., Foresti, G.: On-line trajectory clustering for anomalous events detection. Pattern Recognition Letters 27(15), 1835–1842 (2006)CrossRefGoogle Scholar
  36. 36.
    Prati, A., Mikic, I., Grana, C., Trivedi, M.M.: Shadow detection algorithms for traffic flow analysis: a comparative study. In: Proc. IEEE Intelligent Transportation Systems Conf., pp. 340–345 (2001)Google Scholar
  37. 37.
    Reulke, R., Bauer, S., Döring, T., Meysel, F.: Traffic surveillance using multi-camera detection and multi-target tracking. In: Cree, M. (ed.) Image and Vision Computing New Zealand 2007. University of Waikato, New Zealand (December 2007)Google Scholar
  38. 38.
    Reulke, R., Meysel, F., Bauer, S.: Situation Analysis and Atypical Event Detection with Multiple Cameras and Multi-Object Tracking. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Reulke, R., Bauer, S., Spangenberg, R.: Multi-camera detection and multi-target tracking. To be published in VISAPP - 3rd International Conference on Computer Vision Theory and Applications (2008)Google Scholar
  40. 40.
    Reulke, R., Meffert, B., Piltz, B., Bauer, S., Hein, D., Hohloch, M., Kozempel, K.: Long-term investigations of quality and reliability of the video image detection system m3. In: International Workshop on Traffic Data Collection and its Standardization (2008)Google Scholar
  41. 41.
    Rueß, D., Manthey, K., Reulke, R.: An accurate 3d feature tracking system with wide-baseline stereo smart cameras. In: 2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6 (August 2011)Google Scholar
  42. 42.
    Rueß, D., Reulke, R.: Ellipse Constraints for Improved Wide-Baseline Feature Matching and Reconstruction. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWACA 2011. LNCS, vol. 6636, pp. 168–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    Schneider, D., Schwalbe, E., Maas, H.-G.: Validation of geometric models for fisheye lenses. ISPRS Journal of Photogrammetry and Remote Sensing 64(3), 259–266 (2009)CrossRefGoogle Scholar
  44. 44.
    Sillito, R.R., Fisher, R.B.: Semi-supervised Learning for Anomalous Trajectory Detection. In: BMVC, vol. 27, pp. 1025–1044 (October 2008)Google Scholar
  45. 45.
    Treutner, N., Hellwig, S., Rueß, D.: A framework for people tracking and situation evaluation in multi-camera outdoor environments. In: Paul, L., Stanke, G., Pochanke, M. (eds.) 3D-Nordost, GFaI (2011)Google Scholar
  46. 46.
    Yao, B., Wang, L., Zhu, S.-C.: Learning a Scene Contextual Model for Tracking and Abnormality Detection. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (June 2008)Google Scholar
  47. 47.
    Zhang, Z.: A flexible new technique for camera calibraion. Technical report, Microsoft Research, A Flexible New Technique For Camera Calibraion (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ralf Reulke
    • 1
  • Dominik Rueß
    • 2
  • Kristian Manthey
    • 2
  • Andreas Luber
    • 3
  1. 1.Computer VisionHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institute of Robotics and MechatronicsDLR German Aerospace CenterGermany
  3. 3.Institute of Transportation SystemsDLR German Aerospace CenterBerlinGermany

Personalised recommendations