Abstract
Human motion capturing (HMC) from multiview image sequences is an extremely difficult problem due to depth and orientation ambiguities and the high dimensionality of the state space. In this paper, we introduce a novel hybrid HMC system that combines video input with sparse inertial sensor input. Employing an annealing particle-based optimization scheme, our idea is to use orientation cues derived from the inertial input to sample particles from the manifold of valid poses. Then, visual cues derived from the video input are used to weight these particles and to iteratively derive the final pose. As our main contribution, we propose an efficient sampling procedure where the particles are derived analytically using inverse kinematics on the orientation cues. Additionally, we introduce a novel sensor noise model to account for uncertainties based on the von Mises-Fisher distribution. Doing so, orientation constraints are naturally fulfilled and the number of needed particles can be kept very small. More generally, our method can be used to sample poses that fulfill arbitrary orientation or positional kinematic constraints. In the experiments, we show that our system can track even highly dynamic motions in an outdoor environment with changing illumination, background clutter, and shadows.
Keywords
- Motion Capture
- Inverse Kinematic
- Kinematic Chain
- Inertial Sensor
- Angular Error
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Azad, P., Asfour, T., Dillmann, R.: Robust real-time stereo-based markerless human motion capture. In: Proc. 8th IEEE-RAS Int. Conf. Humanoid Robots (2008)
Baak, A., Rosenhahn, B., Müller, M., Seidel, H.P.: Stabilizing motion tracking using retrieved motion priors. In: ICCV (2009)
Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape and pose from images. In: CVPR (2007)
Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)
Chen, J., Kim, M., Wang, Y., Ji, Q.: Switching gaussian process dynamic models for simultaneous composite motion tracking and recognition. In: CVPR, pp. 2655–2662. IEEE (2009)
Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: CVPR, vol. 2, pp. 126–133 (2000)
Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61(2), 185–205 (2005)
Fisher, R.: Dispersion on a sphere. Proceedings of the Royal Society of London. Mathematical and Physical Sciences (1953)
Fontmarty, M., Lerasle, F., Danes, P.: Data fusion within a modified annealed particle filter dedicated to human motion capture. In: IRS (2007)
Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture. IJCV 87, 75–92 (2010)
Gall, J., Yao, A., Van Gool, L.: 2D Action Recognition Serves 3D Human Pose Estimation. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 425–438. Springer, Heidelberg (2010)
Ganapathi, V., Plagemann, C., Thrun, S., Koller, D.: Real time motion capture using a time-of-flight camera. In: CVPR (2010)
Gavrila, D., Davis, L.: 3D model based tracking of humans in action: a multiview approach. In: CVPR (1996)
Hartley, R., Zisserman, A.: Multiple view geometry, vol. 642. Cambridge University Press, Cambridge (2003)
Hasler, N., Rosenhahn, B., Thormählen, T., Wand, M., Gall, J., Seidel, H.P.: Markerless motion capture with unsynchronized moving cameras. In: CVPR, pp. 224–231 (2009)
Hauberg, S., Lapuyade, J., Engell-Nørregård, M., Erleben, K., Steenstrup Pedersen, K.: Three Dimensional Monocular Human Motion Analysis in End-Effector Space. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 235–248. Springer, Heidelberg (2009)
Kjellstromm, H., Kragic, D., Black, M.J.: Tracking people interacting with objects. In: CVPR, pp. 747–754 (2010)
Lee, C., Elgammal, A.: Coupled visual and kinematic manifold models for tracking. IJCV (2010)
Lee, M.W., Cohen, I.: Proposal maps driven mcmc for estimating human body pose in static images. In: CVPR, vol. 2 (2004)
Lehment, N., Arsic, D., Kaiser, M., Rigoll, G.: Automated pose estimation in 3D point clouds applying annealing particle filters and inverse kinematics on a gpu. In: CVPR Workshop (2010)
Moeslund, T., Hilton, A., Krueger, V., Sigal, L. (eds.): Visual Analysis of Humans: Looking at People. Springer (2011)
Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)
Paden, B.: Kinematics and control of robot manipulators. Ph.D. thesis (1985)
Pons-Moll, G., Baak, A., Helten, T., Müller, M., Seidel, H.P., Rosenhahn, B.: Multisensor-fusion for 3D full-body human motion capture. In: CVPR, pp. 663–670 (2010)
Pons-Moll, G., Rosenhahn, B.: Ball joints for marker-less human motion capture. In: WACV, pp. 1–8 (2009)
Pons-Moll, G., Rosenhahn, B.: Model-based pose estimation. In: Visual Analysis of Humans, pp. 139–170 (2011)
Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H.P., Rosenhahn, B.: Outdoor human motion capture using inverse kinematics and von mises-fisher sampling. In: IEEE International Conference on Computer Vision (ICCV) (November 2011)
Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.: Efficient and Robust Shape Matching for Model Based Human Motion Capture. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 416–425. Springer, Heidelberg (2011)
Salzmann, M., Urtasun, R.: Combining discriminative and generative methods for 3d deformable surface and articulated pose reconstruction. In: CVPR (June 2010)
Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV, pp. 750–757 (2003)
Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH 19(3), 245–254 (1985)
Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic Tracking of 3D Human Figures Using 2D Image Motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)
Sigal, L., Balan, L., Black, M.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: NIPS, pp. 1337–1344 (2008)
Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3d human tracking. In: CVPR (2003)
Tao, Y., Hu, H., Zhou, H.: Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation. IJRR 26(6), 607 (2007)
Technologies, X.M.: http://www.xsens.com/
Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with gaussian process dynamical models. In: CVPR (2006)
Wang, P., Rehg, J.M.: A modular approach to the analysis and evaluation of particle filters for figure tracking. In: CVPR (2006)
Wood, A.: Simulation of the von mises-fisher distribution. Communications in Statistics - Simulation and Computation (1994)
Zhang, F., Hancock, E.R., Goodlett, C., Gerig, G.: Probabilistic white matter fiber tracking using particle filtering and von mises-fisher sampling. Medical Image Analysis 13(1), 5–18 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pons-Moll, G., Leal-Taixé, L., Gall, J., Rosenhahn, B. (2012). Data-Driven Manifolds for Outdoor Motion Capture. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-34091-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34090-1
Online ISBN: 978-3-642-34091-8
eBook Packages: Computer ScienceComputer Science (R0)