The Global Positioning System

  • Joseph L. AwangeEmail author
  • John B. Kyalo Kiema
Part of the Environmental Science and Engineering book series (ESE)


The Global Positioning System or GPS is the oldest and most widely used GNSS system, and as such will be extensively discussed in this and the next chapter. The development of GPS satellites dates from the 1960s.


Total Electron Content Satellite Clock Clock Error Ionospheric Correction Pseudo Random Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agnew DC, Larson KM (2007) Finding the repeat times of the GPS constellation. GPS Solutions 11:71–76CrossRefGoogle Scholar
  2. Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, BerlinCrossRefGoogle Scholar
  3. Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, BerlinGoogle Scholar
  4. Awange JL, Ong’ang’a O(2006) Lake Victoria-ecology, resource of the Lake Basin and environment. Springer, BerlinGoogle Scholar
  5. Awange J, Sharifi M, Ogonda G, Wickert J, Grafarend E, Omulo M (2008) The falling Lake Victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin. Water Resource Management, 22, 775–796. doi: 10.1007/s11269-007-9191-y
  6. Belvis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of water vapour using global positioning system. J Geophys Res 97:15787–15801CrossRefGoogle Scholar
  7. Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manusc Geod 16:205–214Google Scholar
  8. Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607CrossRefGoogle Scholar
  9. Elgered G, Davis JL, Herring TA, Shapiro II (1991) Geodesy by radio interferometry: water vapour radiometry for estimation of the wet delay. J Geophys Res 96:6541–6555CrossRefGoogle Scholar
  10. El-Rabbany A (2006) Introduction to GPS—global positioning system, 2nd edn. Artech House, NorwoodGoogle Scholar
  11. Herring T, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res 95(12):561–581Google Scholar
  12. Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th edn. Springer, WienCrossRefGoogle Scholar
  13. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS—Global Navigation Satellite System: GPS. GLONASS; Galileo and more. Springer, WienGoogle Scholar
  14. Irvine W, Maclennan F (2006) Surveying for construction, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  15. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  16. Resch GM (1984) Water vapour radiometry in geodetic applications. In: Brunner FK (ed) Geodetic refraction. Springer, New York, pp 53–84Google Scholar
  17. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW et al (eds) The use of artificial satellites for geodesy, geophys. Monogr. Ser., vol 15. AGU, Washington, DC, pp. 247–251Google Scholar
  18. Spilker JJ (1980) GPS signal structure and performance characteristics. In: Global positioning system, vol 1. The Institute of Navigation, Washington, DCGoogle Scholar
  19. Tralli DM, Dixon TH, Stephens SA (1988) Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the global positioning system. J Geophys Res 93:6545–6557CrossRefGoogle Scholar
  20. US Army Corps of Engineers (2007) NAVSTAR global positioning system surveying. Engineering and Design Manual, EM 1110-1-1003Google Scholar
  21. Ware R, Rocken C, Hurst KJ (1986) A GPS baseline determination including bias fixing and water vapour radiometer corrections. J Geophys Res 91:9183–9192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.School of EnvironmentMaseno UniversityKisumuKenya
  5. 5.Geospatial and Space TechnologyUniversity of NairobiNairobiKenya

Personalised recommendations