Skip to main content

Application of Diurnal Soil Water Dynamics in Determining Effective Precipitation

  • Chapter
  • First Online:
Coupled Dynamics in Soil

Part of the book series: Springer Theses ((Springer Theses))

  • 892 Accesses

Abstract

Located in western Inner Mongolia, the Badain Jaran Desert is the second largest desert in China and consists of a regular series of stable megadunes, among which over 70 permanent lakes exist. The unexpected lakes in desert attracted research interests in exploring the hydrological process in this particular landscape. However, only a little literature exists on the diurnal and spatial variation of the drying front in this area, which is the main issue in the desert hydrological process to characterize the movement of water in soil. In order to understand the drying front in the Badain Jaran Desert, a field campaign was conducted by the observations of soil physical parameters and micrometeorological parameters. With the field data, the performance of a vadose zone soil water balance model, the HYDRUS1D, was calibrated. Then, the HYDRUS1D was used to produce the spatial and temporal information of coupled water, water vapor and heat transport in sand to characterize the variation pattern of the drying front before, during and after the rainfall. The deepest drying front was applied to determine the effective infiltration, which is defined as the amount of soil water captured by the sand beneath the deepest drying front by infiltrated water of an incident rainfall event.

This chapter is based: Zeng, Y., Z. Su, L. Wan, Z. Yang, T. Zhang, H. Tian, X. Shi, X. Wang, and W. Cao, (2009), Diurnal pattern of the drying front in desert and its application for determining the effective infiltration, Hydrol. Earth Syst. Sci., 13: 703–714.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonacci O, Jukic D, Ljubenkov I (2006) Definition of catchment area in karst: case of the rivers Krcic and Krka, Croatia. Hydrol Sci J 51(4):682–699

    Article  Google Scholar 

  2. Camillo PJ, Gurney RJ (1986) A resistance parameter for bare-soil evaporation models. Soil Sci 141(2):95–105

    Article  Google Scholar 

  3. Chen JS, Li L, Wang JY, Barry DA, Sheng XF, Gu WZ, Zhao X, Chen L (2004) Water resources—groundwater maintains dune landscape. Nature 432(7016):459–460

    Article  CAS  Google Scholar 

  4. Dong ZB, Wang T, Wang XM (2004) Geomorphology of the megadunes in the Badain Jaran desert. Geomorphology 60(1–2):191–203

    Article  Google Scholar 

  5. Fares A, Polyakov V (2006). Advances in crop water management using capacitive water sensors. Adv Agron 90: 43–77

    Google Scholar 

  6. Fares A, Hamdhani H, Jenkins DM (2007) Temperature-dependent scaled frequency: Improved accuracy of multisensor capacitance probes. Soil Sci Soc Am J 71(3):894–900

    Article  CAS  Google Scholar 

  7. Gates JB, Edmunds WM, Ma JZ (2006). Groundwater recharge rates to the Badain Jaran desert: preliminary results from environmental tracer studies. Groundwater-present status and future task. In: 34th IAH Congress proceeding. Beijing, China

    Google Scholar 

  8. Gates JB, Edmunds W, Ma J, Scanlon BR (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16(5):893–910

    Article  CAS  Google Scholar 

  9. Gates JB, Edmunds WM, Ma JZ (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910

    Article  CAS  Google Scholar 

  10. Geiger SL, Durnford DS (2000) Infiltration in homogeneous sands and a mechanistic model of unstable flow. Soil Sci Soc Am J 64(2):460–469

    Article  CAS  Google Scholar 

  11. Geyh MA, Gu WZ, Jakel D (1996) Groundwater recharge study in the Gobi desert, China. Geowissenschaften 14(7–8):279–280

    Google Scholar 

  12. Ghildyal BP, Tripathi RP (1987) Soil physics. Rajkamal Electric Press, India

    Google Scholar 

  13. Golden Software (1990) Surfer reference manual, version 4 edn. Golden Software CO

    Google Scholar 

  14. Gu WZ, Seiler KP, Stichler W, Lu JJ (2006). Groundwater recharge in the badain jaran shamo, inner mongolia, P.R. China. Groundwater-present status and future task, In: 34th IAH Congress proceedings. Beijing, China

    Google Scholar 

  15. Hofmann J (1996) Lakes in the SE part of Badain Jaran Shamo, their limnology and geochemistry. Geowissenschaften 14(7–8):275–278

    Google Scholar 

  16. Hofmann J (1999). Geo-ecological investigations of the waters in the south-eastern Badain Jaran desert, in: Status und spatquartare Gewasserentwicklung, Berliner Geogr. Abh. 64, Habilitationsschrift, Berlin, 1–164

    Google Scholar 

  17. Hukseflux Thermal Sensors (2007) Soil temperature profile sensor user manual (version 0606). Hukseflux Thermal sensors, Delft

    Google Scholar 

  18. Jakel D (1996) The Badain Jaran desert: its origin and development. Geowissenschaften 14(7–8):272–274

    Google Scholar 

  19. Li S, Xiao H, Cheng G, Luo F, Liu L (2006) Mechanical disturbance of microbiotic crusts affects ecohydrological processes in a region of revegetation-fixed sand dunes. Arid Land Res Manag 20(1):61–77

    Article  Google Scholar 

  20. Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley, Hoboken

    Google Scholar 

  21. Ma JZ, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydrogeol J 14(7):1231–1243

    Article  CAS  Google Scholar 

  22. Ma JZ, Li D, Zhang JW, Edmunds WM, Prudhomme C (2003) Groundwater recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran desert. Chin Sci Bull 48(14):1469–1474

    Article  Google Scholar 

  23. Melone F, Corradini C, Morbidelli R, Saltalippi C (2006) Laboratory experimental check of a conceptual model for infiltration under complex rainfall patterns. Hydrol Process 20(3):439–452

    Article  Google Scholar 

  24. Mitkov I, Tartakovsky DM, Winter CL (1998) Dynamics of wetting fronts in porous media. Phys Rev E 58(5):R5245–R5248

    Article  CAS  Google Scholar 

  25. NJHRI (1999) Specification of soil test (SL 237-1999). China water power press, M. o. W. R. o. PRC

    Google Scholar 

  26. Noborio K, McInnes KJ, Heilman JL (1996) Measurements of cumulative infiltration and wetting front location by time domain reflectometry. Soil Sci 161(8):480–483

    Article  CAS  Google Scholar 

  27. Polyakov V, Fares A, Ryder MH (2005) Calibration of a capacitance system for measuring water content of tropical soil. Vadose Zone J 4(4):1004–1010

    Article  Google Scholar 

  28. Saito H, Simunek J, Mohanty BP (2006) Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J 5(2):784–800

    Article  CAS  Google Scholar 

  29. Scanlon BR, Keese K, Reedy RC, Simunek J, Andraski BJ (2003) Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainties. Water Resour Res 39(7):1179 (17 pp)

    Google Scholar 

  30. Sentek Pty Ltd (2001) Calibration of Sentek Pty Ltd soil moisture sensors. Sentek Sensor Technologies, Stepney

    Google Scholar 

  31. Shigeru O, Yosuke K, Ayumi Y (1992) Studies on the infiltration-discharge of rain water and translation penomena in soil. J Hydrol 132:1–23

    Article  Google Scholar 

  32. Tami D, Rahardjo H, Leong EC (2004) Effects of hysteresis on steady-state infiltration in unsaturated slopes. J Geotechn Geoenviron Eng 130(9):956–967

    Article  Google Scholar 

  33. Timlin D, Pachepsky Y (2002) Infiltration measurement using a vertical time-domain reflectometry probe and a reflection simulation model. Soil Sci 167(1):1–8

    Article  CAS  Google Scholar 

  34. Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients. Soil Sci Soc Am J 46:672–678

    Article  Google Scholar 

  35. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  36. Walker AS, Olsen and Bagen JW (1987) The Badain Jaran desert: remote sensing investigations. Geogr J 153(2):205–210

    Google Scholar 

  37. Walvoord MA, Plummer MA, Phillips FM, Wolfsberg AV (2002) Deep arid system hydrodynamics. 1. Equilibrium states and response times in thick desert vadose zones. Water Resour Res 38(12):1308

    Article  Google Scholar 

  38. Wang GX, Cheng GD (1999) Water resource development and its influence on the environment in arid areas of China—the case of the Hei River basin. J Arid Environ 43(2):121–131

    Article  Google Scholar 

  39. Wang XP, Li XR, Xiao HL, Berndtsson R, Pan YX (2007) Effects of surface characteristics on infiltration patterns in an arid shrub desert. Hydrol Process 21(1):72–79

    Article  Google Scholar 

  40. Wang XP, Cui Y, Pan YX, Li XR, Yu Z, Young MH (2008) Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems. J Hydrol 358(1–2):134–143

    Article  Google Scholar 

  41. Wu JQ, Zhang RD, Yang JZ (1997) Estimating infiltration recharge using a response function model. J Hydrol 198(1–4):124–139

    Article  Google Scholar 

  42. Yang XP (2001) Landscape evolution and palaeoclimate in the deserts of northwestern China, with a special reference to Badain Jaran and Taklamakan. Chin Sci Bull 46:6–11

    Article  Google Scholar 

  43. Yang XP (2006) Chemistry and late quaternary evolution of ground and surface waters in the area of Yabulai mountains, western Inner Mongolia, China. Catena 66(1–2):135–144

    Article  Google Scholar 

  44. Yang XP, Williams MAJ (2003) The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran desert, Inner Mongolia, China. Catena 51(1):45–60

    Article  CAS  Google Scholar 

  45. Yang XP, Liu TS, Xiao HL (2003) Evolution of megadunes and lakes in the Badain Jaran desert, Inner Mongolia, China during the last 31,000 years. Quatern Int 104:99–112

    Article  Google Scholar 

  46. Yang H, Rahardjo H, Wibawa B, Leong EC (2004) A soil column apparatus for laboratory infiltration study. Geotech Test J 27(4):347–355

    Google Scholar 

  47. Yang H, Rahardjo H, Leong EC (2006) Behavior of unsaturated layered soil columns during infiltration. J Hydrol Eng 11(4):329–337

    Article  Google Scholar 

  48. Zeng Y, Wan L, Su Z, Saito H, Huang K, Wang X (2009) Dirnal soil water dynamics in the shallow vadose zone. Environmental Geology 58:11–23

    Article  CAS  Google Scholar 

  49. Zhang HC, Ming QZ (2006) Hydrology and lake Evolution in Hyperarid Northwestern China and the mystery of megadune formation in Badain Jaran Desert. Adv Earth Sci 21(5):532–538 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijian Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, Y. (2013). Application of Diurnal Soil Water Dynamics in Determining Effective Precipitation. In: Coupled Dynamics in Soil. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34073-4_3

Download citation

Publish with us

Policies and ethics