Skip to main content

Shear Rheology of Interfaces: Micro Rheological Methods

  • Chapter
  • First Online:
  • 1689 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Microrheology offers several advantages over traditional macroscopic surface rheology: the use of very small samples, the possibility of studying heterogeneous samples and the broad range of frequency that can be explored. In this Chapter the microrheology of fluid interfaces is discussed, with special emphasis on particle tracking and optical tweezer techniques. We comment the main results and the assumptions of one of the recent theories aiming to describe the hydrodynamics of a particle trapped at a monolayer, and to obtain the interfacial shear modulus over a broad frequency range not available to macroscopic interfacial shear rheometers. Experimental results for a variety of systems are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1999)

    Google Scholar 

  2. Riande, E., Díaz-Calleja, R., Prolongo, M.G., Masegosa, R.M., Salom, C.: Polymer Viscoelasticity. Stress and Strain in Practice. Marcel Dekker, New York (2000)

    Google Scholar 

  3. Lee, M.H., Reich, D.H., Stebe, K.J., Leheny, R.L.: Combined passive and active microrheology study of protein-layer formation at an air-water interface. Langmuir 25, 7976–7982 (2009)

    Article  Google Scholar 

  4. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996)

    Article  Google Scholar 

  5. MacKintosh, F.C., Schmidt, C.F.: Microrheology. Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999)

    Article  Google Scholar 

  6. Mukhopadhyay, A., Granick S.: Micro- and nanorheology. Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001)

    Article  Google Scholar 

  7. Breedveld, V., Pine, D.J.: Microrheology as a tool for high-throughput screening. J. Mater. Sci. 38, 4461–4470 (2003)

    Article  ADS  Google Scholar 

  8. Waigh, T.A.: Microrheology of complex fluids. Rep. Prog. Phys. 68, 685–742 (2005)

    Article  ADS  Google Scholar 

  9. Gardel, M.L., Valentine, M.T., Weitz, D.A.: Microrheology. In: Brauer, K. (ed.) Microscale Diagnostic Techniques, pp. 1–49. Springer, Berlin (2005)

    Chapter  Google Scholar 

  10. Cicuta, P., Donald, A.M.: Microrheology: a review of the method and applications. Soft Matter 3, 1449–1455 (2007)

    Article  ADS  Google Scholar 

  11. Bonales, L.J., Maestro, A., Rubio, R.G., Ortega, F.: Microrheology of complex systems. In: Schulz, H.E., Andrade Simoes, A.L., Jahara Lobosco, R. (eds.) Hydrodynamics. Advanced Topics. INTECH, Rijeka (2011)

    Google Scholar 

  12. Langevin, D.: Influence of interfacial rheology on foam and emulsion properties. Adv. Colloid Interface Sci. 88, 209–222 (2000)

    Article  Google Scholar 

  13. Guzmán, E., Chuliá-Jordán, R., Ortega, F., Rubio, R.G.: Influence of the percentage of acetylation on the assembling of LbL multilayers of poly(acrylic acid) and chitosan. Phys. Chem. Chem. Phys. 13, 18200–18207 (2011)

    Article  Google Scholar 

  14. Binks, B., Horozov, S. (eds.): Colloidal Particles at Liquid Interfaces. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. Miller R., Liggieri L. (eds.): Interfacial Rheology. Brill, Leiden (2009)

    Google Scholar 

  16. Munoz, M.G., Monroy, F., Ortega F., Rubio, R.G., Langevin, D.: Monolayers of symmetric triblock copolymers at the air-water interface. 2. Adsorption kinetics. Langmuir 16, 1094–1101 (2000)

    Article  Google Scholar 

  17. Díez-Pascual, A.M., Monroy F., Ortega F., Rubio, R.G., Miller R., Noskov, B.A.: Adsorption of water-soluble polymers with surfactant character. Dilational viscoelasticity. Langmuir 23, 3802–3808 (2007)

    Article  Google Scholar 

  18. Langevin, D. (ed.): Light Scattering by Liquid Surfaces and Complementary Techniques. Marcel Dekker, New York (1989)

    Google Scholar 

  19. Barentin, C., Muller, P., Ybert, C., Joanny, J.-F., di Meglio, J.-M.: Shear viscosity of polymer and surfactant monolayers. Eur. Phys. J. E 2, 153–159 (2000)

    Article  Google Scholar 

  20. Gavranovic, G.T., Deutsch, J.M., Fuller, G.G.: Two-dimensional melts: chains at the air-water interface. Macromolecules 38, 6672–6679 (2005)

    Article  ADS  Google Scholar 

  21. Maestro, A., Ortega, F., Monroy, F., Krägel, J., Miller, R.: Molecular weight dependence of the shear rheology of poly(methyl methacrylate) Langmuir films: a comparison between two different rheometry techniques. Langmuir 25, 7393–7400 (2009)

    Article  Google Scholar 

  22. Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol Struct. 26, 373–399 (1997)

    Article  Google Scholar 

  23. Bonales, L.J., Rubio, J.E.F., Ritacco, H., Vega, C., Rubio, R.G., Ortega, F.: Freezing transition and interaction potential in monolayers of microparticles at fluid interfaces. Langmuir 27, 3391–3400 (2011)

    Article  Google Scholar 

  24. Konopka, M.C., Weisshaar, J.C.: Heterogeneous motion of secretory vesicles in the actin cortex of live cells: 3D tracking to 5-nm accuracy. J. Phys. Chem. A 108, 9814–9826 (2004)

    Article  Google Scholar 

  25. Alexander, M., Dalgleish, D.G.: Diffusing wave spectroscopy of aggregating and gelling systems. Curr. Opin. Colloid Interface Sci. 12, 179–186 (2007)

    Article  Google Scholar 

  26. Hasnain, I., Donald, A.M.: Microrheology characterization of anisotropic materials. Phys. Rev. E 73, 031901 (2006)

    Article  ADS  Google Scholar 

  27. Chen, D.T., Weeks, E.R., Crocker, J.C., Islam, M.F., Verma, R., Gruber, J., Levine, A.J., Lubensky, T.C., Yodh, A.G.: Phys. Rev. Lett. 90, 108301 (2003)

    Article  ADS  Google Scholar 

  28. Liu, J., Gardel, M.L., Kroy, K., Frey, E., Hoffman, B.D., Crocker, J.C., Bausch, A.R., Weitz, D.A.: Microrheology probes length scale dependent rheology. Phys. Rev. Lett. 96, 118104 (2006)

    Article  ADS  Google Scholar 

  29. Mason, T.G., Weitz, D.A.: Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995)

    Article  ADS  Google Scholar 

  30. Levine, A.J., Lubensky, T.C.: One- and two-particle microrheology. Phys. Rev. Lett. 85, 1774–1777 (2000)

    Article  ADS  Google Scholar 

  31. Mason, Th.G.: Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheol. Acta 39, 371–378 (2000)

    Article  Google Scholar 

  32. Dasgupta, B.R., Tee, S.Y., Crocker, J.C., Frisken, B.J., Weitz, D.A.: Microrheology of polyethylene oxide using diffusion wave spectroscopy and single scattering. Phys. Rev. E 65, 051505 (2002)

    Article  ADS  Google Scholar 

  33. Evans, R.M., Tassieri, M., Auhl, D., Waigh, Th.A.: Direct conversion of rheological compliance measurements into storage and loss moduli. Phys. Rev. E 80, 012501 (2009)

    Article  ADS  Google Scholar 

  34. Mason, Th.G.: Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheol. Acta 39, 371–378 (2000)

    Article  Google Scholar 

  35. Wu, J., Dai, L.L.: One-particle microrheology at liquid-liquid interfaces. Appl. Phys. Lett. 89, 094107 (2006)

    Article  ADS  Google Scholar 

  36. Felderhof, B.U.: Estimating the viscoelastic moduli of a complex fluid from observation of Brownian motion. J. Chem. Phys. 131, 164904 (2009)

    Article  ADS  Google Scholar 

  37. Song, Y., Luo, M., Dai, L.L.: Understanding nanoparticles diffusion and exploring interfacial nanorheology using molecular dynamics simulations. Langmuir 26, 5–9 (2009)

    Article  Google Scholar 

  38. Wu, Ch-Y., Tarimala, S., Dai, L.L.: Dynamics of charged microparticles at oil-water interfaces. Langmuir 22, 2112–2116 (2006)

    Article  Google Scholar 

  39. Wu, Ch-Y., Song, Y., Dai, L.L.: Two-particle microrheology at oil-water interfaces. Appl. Phys. Lett. 95, 144104 (2009)

    Article  ADS  Google Scholar 

  40. Ou-Yang, H.D., Wei, M.T.: Complex fluids: probing mechanical properties of biological systems with optical tweezers. Ann. Rev. Phys. Chem. 61, 421–440 (2010)

    Article  Google Scholar 

  41. Borsali, R., Pecora, R. (eds.): Soft-Matter Characterization, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  42. Resnick, A.: Use of optical tweezers for colloid science. J. Colloid Interface Sci. 262, 55–59 (2003)

    Article  Google Scholar 

  43. Yoon, Y.-Z., Kotar, J., Yoon, G., Cicuta, P.: The nonlinear mechanical response of the red blood cell. Phys. Biol. 5, 036007 (2008)

    Article  ADS  Google Scholar 

  44. Steffen, P., Heinig, P., Wurlitzer, S., Khattari, Z., Fischer, Th.M.: The translational and rotational drag on Langmuir monolayer domains. J. Chem. Phys. 115, 994–997 (2001)

    Article  ADS  Google Scholar 

  45. Chandrasekhar, S.: The theory of Brownian motion. Rev. Mod. Phys. 21, 383 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Fischer, Th.M., Dhar, P., Heinig, P.: The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451–475 (2006)

    Article  ADS  MATH  Google Scholar 

  47. Fischer, Th.M.: Comment on “Shear viscosity of Langmuir monolayers in the low density limit”. Phys. Rev. Lett. 92, 139603 (2004)

    Article  ADS  Google Scholar 

  48. Wurlitzer, S., Schmiedel, H., Fischer, Th.M.: Electrophoretic relaxation dynamics of domains in Langmuir-monolayer. Langmuir 18, 4393 (2002)

    Article  Google Scholar 

  49. Sickert, M., Rondelez, F.: Shear viscosity of Langmuir monolayers in the low density limit. Phys. Rev. Lett. 90, 126104 (2003)

    Article  ADS  Google Scholar 

  50. Bonales, L.J., Ritacco, H., Rubio, J.E.F., Rubio, R.G., Monroy, F., Ortega, F.: Dynamics in ultrathin films: particle tracking microrheology of Langmuir monolayers. Open Phys. Chem. J. 1, 25–32 (2007)

    ADS  Google Scholar 

  51. Hilles, H.M., Ritacco, H., Monroy, F., Ortega, F., Rubio, R.G.: Temperature and concentration effects on the equilibrium and dynamic behavior of a Langmuir monolayer: from fluid to gel-like behavior. Langmuir 25, 11528–11532 (2009)

    Article  Google Scholar 

  52. Sickert, M., Rondelez, F., Stone, H.A.: Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Eur. Phys. Lett. 79, 66005 (2007)

    Article  ADS  Google Scholar 

  53. Prasad, V., Koehler, S.A., Weeks, E.R.: Two-particle microrheology of quasi-2D viscous systems. Phys. Rev. Lett. 97, 176001 (2006)

    Article  ADS  Google Scholar 

  54. Prasad, V., Weeks, E.R.: Two-dimensional to three-dimensional transition in soap films demostrated by microrheology. Phys. Rev. Lett. 102, 178302 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by MICINN under Grant FIS2012-38231-C02-01, by ESA under Grant FASES MAP-AO-00-052, and Pasta A.J. Mendoza and R. Chuliá are grateful to U.E. (Grant Marie-Curie-ITN “MULTIFLOW”) for a Ph.D. and a post-doc contract, respectively. F. Martínez Pedrero is grateful to the PICATA program (UCM) for a post-doc contract. We are grateful to Th.M. Fischer, R. Miller and L. Liggieri for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendoza, A.J. et al. (2013). Shear Rheology of Interfaces: Micro Rheological Methods. In: Rubio, R., et al. Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34070-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34070-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34069-7

  • Online ISBN: 978-3-642-34070-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics