Using Neural Networks for Route and Destination Prediction in Intelligent Transport Systems

  • Tomáš Mikluščák
  • Michal Gregor
  • Aleš Janota
Part of the Communications in Computer and Information Science book series (CCIS, volume 329)


Route prediction and destination prediction based on the past routes are a missing piece in intelligent transport systems (ITS). These predictions can be useful in many areas: congestion prediction, traffic control, upcoming traffic hazards and targeting advertisements next to the roads are some of the obvious ones. Simply said, if we can estimate the future location of cars which are already on the road network, we will be able to estimate future congestions and upcoming traffic hazards. The GPS units in the new generation of smartphones provide a good data source for prediction algorithms. Google maps application already collects this data. This paper discusses several algorithms and methods which have been used in similar areas and a route prediction method based on artificial neural networks using the past routes of a vehicle.


congestion prediction neural networks intelligent transport systems prediction methods location management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karbassi, A., Barth, M.: Vehicle route prediction and time of arrival estimation techniques for improved transportation system management. In: IEEE Intelligent Vehicles Symposium, IV 2003, pp. 511–516 (2003)Google Scholar
  2. 2.
    Ziebart, B.D., Maas, A.L., Dey, A.K., Bagnell, J.A.: Navigate Like a Cabbie: Probabilistic Reasoning from Observed Context-Aware Behavior. In: UbiComp 2008 Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 322–331 (2008)Google Scholar
  3. 3.
    Letcher, J., Krumm, J., Horvitz, E.: Trip router with individualized preferences: Incorporating personalization into route planning. In: Proc. IAAI, pp. 1795–1800 (2006)Google Scholar
  4. 4.
    Froehlich, J., Krumm, J.: Route Prediction from Trip Observations. SAE Technical Paper 2008-01-0201, 13 p. (2008)Google Scholar
  5. 5.
    Deguchi, Y., et al.: Hev Charge/Discharge Control System Based on Navigation Information. In: SAE Convergence International Congress & Exposition on Transportation Electronics, Detroit, Michigan USA (2004)Google Scholar
  6. 6.
    Roy, A., Das, S.K., Basu, K.: A Predictive Framework for Location-Aware Resource Management in Smart Homes. IEEE Transactions on Mobile Computing 6(11), 1270–1283 (2007)CrossRefGoogle Scholar
  7. 7.
    Mikluščák, T., Gregor, M.: Person movement prediction using artificial neural networks with dynamic training on a fixed-size training data set. Applied Computer Science: Management of Production Processes 7(2), 43–56 (2011)Google Scholar
  8. 8.
    Vintan, L., Gellert, A., Petzold, J., Ungerer, T.: Person Movement Prediction Using Neural Networks. Universität Augsburg, Institut für Informatik, Technical Report 2004-10, 16 p. (2004)Google Scholar
  9. 9.
    Petzold, J., Pietzowski, A., Bagci, F., Trumler, W., Ungerer, T.: Prediction of Indoor Movements Using Bayesian Networks. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 211–222. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Gellert, A., Vintan, L.: Person Movement Prediction Using Hidden Markov Models. Studies in Informatics and Control 15(1), 17–30 (2006)Google Scholar
  11. 11.
    Roy, N., Roy, A., Das, S.K.: Context-aware resource management in multi-inhabitant smart homes: a Nash H-learning based approach. In: IEEE Int’l Conference on Pervasive Computing and Communications, vol. 11, pp. 148–158 (2006)Google Scholar
  12. 12.
    Wong, W.K., Xia, M., Chu, W.C.: Adaptive neural network model for time-series forecasting. European Journal of Operational Research 207(2), 807–816 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomáš Mikluščák
    • 1
  • Michal Gregor
    • 1
  • Aleš Janota
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of ŽilinaŽilinaSlovakia

Personalised recommendations