Advertisement

Motivation

The term Intelligent Transportation Systems (ITS), [4,5], refers to information and communication technology (applied to transport infrastructure and vehicles) that improve transport outcomes such as transport safety, transport productivity, travel reliability, informed travel choices, social equity, environmental performance and network operation resilience [2,3]. Safety-critical ITS include the so called X-by-wire (where ‘X’ can stand for ‘fly’, ‘brake’, ’accelerate, ‘steer’, etc.) systems used in domains like aerospace, automotive and railways. The importance of ITS is increasing as novel driverless/pilotless applications are emerging.

Keywords

Model Check Formal Method Intelligent Transportation System Symbolic Model Check State Space Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnefoi, F., Hillah, L.M., Kordon, F., Renault, X.: Design, modeling and analysis of ITS using UML and Petri Nets. In: IEEE Intelligent Transportation Systems Conference (ITSC 2007), pp. 314–319 (2007)Google Scholar
  2. 2.
    Cascetta, E.: Transportation Systems Engineering: Theory and Methods. Kluwer Academic Publishers (2001)Google Scholar
  3. 3.
    Flammini, F.: Railway Safety, Reliability, and Security: Technologies and Systems Engineering. IGI Global (2012)Google Scholar
  4. 4.
    IEEE Intelligent Transportation Systems Society home-page, http://sites.ieee.org/itss/ (last access June 2012)
  5. 5.
    International Journal of Intelligent Transportation Systems Research, http://www.springer.com/engineering/electronics/journal/13177
  6. 6.
    Flammini, F., Marrone, S., Mazzocca, N., Nardone, R., Vittorini, V.: Model-Driven V&V Processes for Computer Based Control Systems: A Unifying Perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 190–204. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Gigante, G., Pascarella, D.: Formal Methods in Avionic Software Certification: The DO-178C Perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 205–215. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Ferrari, A., Spagnolo, G.O., Martelli, G., Menabeni, S.: Product Line Engineering Applied to CBTC Systems Development. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 216–230. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Marrone, S., Nardone, R., Orazzo, A., Petrone, I., Velardi, L.: Improving Verification Process in Driverless Metro Systems: The MBAT Project. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 231–245. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Winter, K.: Optimising Ordering Strategies for Symbolic Model Checking of Railway Interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 246–261. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Haxthausen, A.E.: Automated Generation of Safety Requirements from Railway Interlocking Tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 262–276. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Fantechi, A.: Distributing the Challenge of Model Checking Interlocking Control Tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 277–290. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessandro Fantechi
    • 1
    • 3
  • Francesco Flammini
    • 2
  • Stefania Gnesi
    • 3
  1. 1.DSIUniversit degli Studi di FirenzeFlorenceItaly
  2. 2.Ansaldo STS I&CNaplesItaly
  3. 3.Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNRPisaItaly

Personalised recommendations