A simulation model of a mobile robot is presented in the chapter. The robot is equipped with four track systems, wrapped around four movable and independently driven track holders. Driving torques are transmitted to the track systems and track holders via speed reducers. The study is focused on friction effects in gearing, and especially on the self-locking properties. A simplified mathematical model of friction in speed reducers is presented. The model is based on the Coulomb friction law and exploits the analogy between reducers and wedge mechanisms. This friction model is implemented in a general purpose simulation software in which the entire tracked mobile robot is modelled. A multibody model of the complete robot is briefly described. Simulation results obtained for different friction levels, varying from friction absence to friction beyond the self-locking limit, are compared and discussed. The robot motors are also modelled and requirements for electric power in various operating conditions are estimated.
Keywords
- Kinetic Friction
- Speed Reducer
- Input Torque
- Multibody Model
- Input Shaft
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.