Internal Simulations for Behaviour Selection and Recognition

  • Guido Schillaci
  • Bruno Lara
  • Verena V. Hafner
Conference paper

DOI: 10.1007/978-3-642-34014-7_13

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7559)
Cite this paper as:
Schillaci G., Lara B., Hafner V.V. (2012) Internal Simulations for Behaviour Selection and Recognition. In: Salah A.A., Ruiz-del-Solar J., Meriçli Ç., Oudeyer PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg

Abstract

In this paper, we present internal simulations as a methodology for human behaviour recognition and understanding. The internal simulations consist of pairs of inverse forward models representing sensorimotor actions. The main advantage of this method is that it both serves for action selection and prediction as well as recognition. We present several human-robot interaction experiments where the robot can recognize the behaviour of the human reaching for objects.

Keywords

behaviour recognition internal simulation human-robot interaction internal models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guido Schillaci
    • 1
  • Bruno Lara
    • 2
  • Verena V. Hafner
    • 1
  1. 1.Cognitive Robotics Group, Department of Computer ScienceHumboldt-Universität zu BerlinGermany
  2. 2.Cognitive Robotics Group, Faculty of ScienceUniversidad Autonoma del Estado de MorelosCuernavacaMexico

Personalised recommendations