Skip to main content

Internal Simulations for Behaviour Selection and Recognition

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7559)

Abstract

In this paper, we present internal simulations as a methodology for human behaviour recognition and understanding. The internal simulations consist of pairs of inverse forward models representing sensorimotor actions. The main advantage of this method is that it both serves for action selection and prediction as well as recognition. We present several human-robot interaction experiments where the robot can recognize the behaviour of the human reaching for objects.

Keywords

  • behaviour recognition
  • internal simulation
  • human-robot interaction
  • internal models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34014-7_13
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-34014-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akgün, B., Tunaöglu, D., Sahin, E.: Action recognition through an action generation mechanism. In: International Conference on Epigenetic Robotics (EPIROB) (2010)

    Google Scholar 

  2. Baron-Cohen, S.: Mindblindness: An Essay on Autism and Theory of Mind. MIT Press (2001)

    Google Scholar 

  3. Barsalou, L.W.: Grounded cognition. Annual Reviews Psychology 59, 617–645 (2008)

    CrossRef  Google Scholar 

  4. Blakemore, S.J., Wolpert, D., Frith, C.: Why can’t you tickle yourself? Neuroreport 11, 11–16 (2000)

    CrossRef  Google Scholar 

  5. Blakemore, S.J., Goodbody, S.J., Wolpert, D.M.: Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience 18(18), 7511–7518 (1998)

    Google Scholar 

  6. Dearden, A.: Developmental learning of internal models for robotics. Ph.D. thesis, Imperial College London (2008)

    Google Scholar 

  7. Demiris, Y., Simmons, G.: Perceiving the unusual: Temporal properties of hierarchical motor representations for action perception. Neural Networks pp. 272–284 (2006)

    Google Scholar 

  8. Frith, C.D.: The Cognitive Neuropsychology of Schizophrenia. Erlbaum Associates (1992)

    Google Scholar 

  9. Gallese, V.: Before and below theory of mind: embodied simulation and the neural correlates of social cognition. Phil. Trans. of the Royal Society B 362(1480), 659–669 (2007)

    CrossRef  Google Scholar 

  10. Hafner, V.V., Bachmann, F.: Human-humanoid walking gait recognition. In: Proceedings of Humanoids 2008, 8th IEEE-RAS International Conference on Humanoid Robots, pp. 598–602 (2008)

    Google Scholar 

  11. Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Computation 13, 2201–2220 (2001)

    MATH  CrossRef  Google Scholar 

  12. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.657

    CrossRef  Google Scholar 

  13. Lara, B., Rendon, J.M., Capistran, M.: Prediction of multi-modal sensory situations, a forward model approach. In: Proceedings of the 4th IEEE Latin America Robotics Symposium, vol. 1 (2007)

    Google Scholar 

  14. Möller, R., Schenck, W.: Bootstrapping cognition from behavior–a computerized thought experiment. Cognitive Science 32(3), 504–542 (2008), http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ799248

    CrossRef  Google Scholar 

  15. Prinz, W.: Perception and action planning. European Journal of Cognitive Psychology 9(2), 129–154 (1997)

    MathSciNet  CrossRef  Google Scholar 

  16. Schillaci, G., Hafner, V.V.: Random movement strategies in self-exploration for a humanoid robot. In: Proc. of the Intern. Conf. on Human-Robot Interaction 2011, pp. 245–246 (2011)

    Google Scholar 

  17. Schillaci, G., Hafner, V.V.: Prerequisites for intuitive interaction - on the example of humanoid motor babbling. In: HRI 2011 Workshop on Expectations in intuitive human-robot interaction, Laussane, Switzerland (March 2011)

    Google Scholar 

  18. Schillaci, G., Hafner, V.V., Lara, B.: Coupled inverse-forward models for action execution leading to tool-use in a humanoid robot. In: Proceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction, Boston (2012)

    Google Scholar 

  19. Schillaci, G., Lara, B., Hafner, V.V.: Internal simulation of the sensorimotor loop in action execution and recognition. In: Proceedings of the 5th International Conference on Cognitive Systems (CogSys 2012), Vienna, Austria (2012)

    Google Scholar 

  20. Troje, N.F.: Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision 2(5), 371–387 (2002)

    CrossRef  Google Scholar 

  21. van der Wel, R., Sebanz, N., Knoblich, G.: Action perception from a common coding perspective. In: Johnson, K., Shiffrar, M. (eds.) People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (in press)

    Google Scholar 

  22. Wilson, M., Knoblich, G.: The case for motor for motor involvement in perceiving conspecifics. Psychological Bulletin 131, 460–473 (2005)

    CrossRef  Google Scholar 

  23. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Netw. 11(7-8), 1317–1329 (1998)

    CrossRef  Google Scholar 

  24. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358(1431), 593–602 (2003), http://dx.doi.org/10.1098/rstb.2002.1238

    CrossRef  Google Scholar 

  25. Wolpert, D.M., Flanagan, J.R.: Motor prediction. Current Biology 11(18), R729–R732 (2001), http://www.sciencedirect.com/science/article/B6VRT-441NT53-4/2/6f0a5d133bce3780760eeb0841865e58

    CrossRef  Google Scholar 

  26. Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience 3(suppl.), 1212–1217 (2000), http://dx.doi.org/10.1038/81497

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schillaci, G., Lara, B., Hafner, V.V. (2012). Internal Simulations for Behaviour Selection and Recognition. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34014-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34013-0

  • Online ISBN: 978-3-642-34014-7

  • eBook Packages: Computer ScienceComputer Science (R0)