Skip to main content

Evaluation Measures for Similarity Search Results in Process Model Repositories

  • Conference paper
Conceptual Modeling (ER 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7532))

Included in the following conference series:

Abstract

With the increasing uptake of business process management efforts in companies, similarity search in large process model repositories has gained significance, as it forms a cornerstone of effective process model management and reuse. Similarity search uses a process model as query and retrieves all models, which resemble the query, in a ranked order. So far, the quality of the ranking has not been investigated.

In this paper, we propose quality measures for similarity search results in order to address this problem, providing information on how good and how differentiated the results are. Our measures assess result statistics, which are derived from the similarity to the query model, and the agreement of different rankings, produced by diverse similarity measures. We apply our findings to a reference process model collection and comprehensively evaluate their prediction towards human assessment of process similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akkiraju, R., Ivan, A.: Discovering Business Process Similarities: An Empirical Study with SAP Best Practice Business Processes. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 515–526. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Awad, A., Sakr, S., Kunze, M., Weske, M.: Design by Selection: A Reuse-Based Approach for Business Process Modeling. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 332–345. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Becker, M., Laue, R.: Analysing Differences between Business Process Similarity Measures. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 39–49. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Shaft, U., Ramakrishnan, R.: When Is Nearest Neighbors Indexable? In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 158–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bunke, H., Allermann, G.: Inexact Graph Matching for Structural Pattern Recognition. Pattern Recognition Letters 1(4), 245–253 (1983)

    Article  MATH  Google Scholar 

  6. Bunke, H.: A Graph Distance Metric Based on the Maximal Common Subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

    Article  MATH  Google Scholar 

  7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in Metric Spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  8. Conover, W.J.: Practical Non-Parametric Statistics, 2nd edn. John Wiley and Sons, New York (1980)

    Google Scholar 

  9. Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. Addison-Wesley (2010)

    Google Scholar 

  10. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business Process Reference Model. Prentice-Hall (1997)

    Google Scholar 

  11. Decker, G., Mendling, J.: Process Instantiation. Data Knowl. Eng. 68, 777–792 (2009)

    Article  Google Scholar 

  12. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of Business Process Models: Metrics and Evaluation. Inf.Sys. 36(2), 498–516 (2011)

    Article  Google Scholar 

  14. Dumas, M., García-Bañuelos, L., Dijkman, R.: Similarity Search of Business Process Models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)

    Google Scholar 

  15. Hjaltason, G.R., Samet, H.: Index-driven Similarity Search in Metric Spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)

    Article  Google Scholar 

  16. Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity – A Proper Metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Springer (2008)

    Google Scholar 

  18. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten (EPC). In: Promise, pp. 64–77 (2002)

    Google Scholar 

  19. Rosemann, M.: Potential Pitfalls of Process Modeling: Part B. Business Process Management Journal 12(3), 377–384 (2006)

    Article  Google Scholar 

  20. Vanderfeesten, I., Cardoso, J., Reijers, H., Van Der Aalst, W.: Quality Metrics for Business Process Models. In: BPM and Workflow Handbook, pp. 1–12 (2006)

    Google Scholar 

  21. Wang, R.Y., Strong, D.M.: Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems 12(4), 5–33 (1996)

    MATH  Google Scholar 

  22. Weber, B., Reichert, M.: Refactoring Process Models in Large Process Repositories. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 124–139. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guentert, M., Kunze, M., Weske, M. (2012). Evaluation Measures for Similarity Search Results in Process Model Repositories. In: Atzeni, P., Cheung, D., Ram, S. (eds) Conceptual Modeling. ER 2012. Lecture Notes in Computer Science, vol 7532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34002-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34002-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34001-7

  • Online ISBN: 978-3-642-34002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics