Mechanisms for Scheduling with Single-Bit Private Values

  • Vincenzo Auletta
  • George Christodoulou
  • Paolo Penna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7615)


We consider randomized mechanisms for multi-dimensional scheduling. Following Lavi and Swamy [10], we study a setting with restrictions on the domain, while still preserving multi-dimensionality. In a sense, our setting is the simplest multi-dimensional setting, where each machine holds privately only a single-bit of information.

We prove a separation between truthful-in-expectation and universally truthful mechanisms for makespan minimization: We first show how to design an optimal truthful-in-expectation mechanism, and then prove lower bounds on the approximation guarantee of universally truthful mechanisms.


Approximation Factor Deterministic Algorithm Schedule Mechanism Approximation Guarantee Input Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, A., Tardos, E.: Truthful Mechanisms for One-Parameter Agents. In: Proc. 42nd FOCS, pp. 482–491 (2001)Google Scholar
  2. 2.
    Ashlagi, I., Dobzinski, S., Lavi, R.: An Optimal Lower Bound for Anonymous Scheduling Mechanisms. In: Proc. 10th EC, pp. 169–176 (2009)Google Scholar
  3. 3.
    Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)CrossRefGoogle Scholar
  4. 4.
    Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism design for fractional scheduling on unrelated machines. ACM Trans. on Algorithms 6(2) (2010)Google Scholar
  5. 5.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A Lower Bound for Scheduling Mechanisms. Algorithmica 55(4), 729–740 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Christodoulou, G., Kovács, A.: A deterministic truthful PTAS for scheduling related machines. In: Proc. of 21st SODA, pp. 1005–1016 (2010)Google Scholar
  7. 7.
    Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful Approximation Schemes for Single-Parameter Agents. SIAM J. on Computing 40(3), 915–933 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Koutsoupias, E., Vidali, A.: A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lavi, R., Swamy, C.: Truthful mechanism design for multidimensional scheduling via cycle monotonicity. Games and Economic Behavior 67(1), 99–124 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lu, P.: On 2-Player Randomized Mechanisms for Scheduling. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 30–41. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Lu, P., Yu, C.: An Improved Randomized Truthful Mechanism for Scheduling Unrelated Machines. In: Proc. of 25th STACS. LIPIcs, vol. 1, pp. 527–538 (2008)Google Scholar
  13. 13.
    Lu, P., Yu, C.: Randomized Truthful Mechanisms for Scheduling Unrelated Machines. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 402–413. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Mu’alem, A., Schapira, M.: Setting Lower Bounds on Truthfulness. In: Proc. of 18th SODA, pp. 1143–1152 (2007)Google Scholar
  15. 15.
    Nisan, N., Ronen, A.: Algorithmic Mechanism Design. Games and Economic Behavior 35, 166–196 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  17. 17.
    Vickrey, V.: Counterspeculations, auctions and competitive sealed tenders. Journal of Finance 16, 8–37 (1961)CrossRefGoogle Scholar
  18. 18.
    Yu, C.: Truthful mechanisms for two-range-values variant of unrelated scheduling. Theoretical Computer Science 410(21-23), 2196–2206 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vincenzo Auletta
    • 1
  • George Christodoulou
    • 2
  • Paolo Penna
    • 1
  1. 1.Dipartimento di InformaticaUniversità di SalernoItaly
  2. 2.Computer Science DepartmentUniversity of LiverpoolUnited Kingdom

Personalised recommendations