Congestion Games with Capacitated Resources

  • Laurent Gourvès
  • Jérôme Monnot
  • Stefano Moretti
  • Nguyen Kim Thang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7615)


We extend congestion games to the setting where every resource is endowed with a capacity which possibly limits its number of users. From the negative side, we show that a pure Nash equilibrium is not guaranteed to exist in any case and we prove that deciding whether a game possesses a pure Nash equilibrium is NP-complete. Our positive results state that congestion games with capacities are potential games in the well studied singleton case. Polynomial algorithms that compute these equilibria are also provided.


Nash Equilibrium Pure Strategy Strategy Space Delay Function Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: A unified approach to congestion games and two-sided markets. Internet Mathematics 5(4), 439–457 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6) (2008)Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bauer, S., Clark, D., Lehr, W.: The evolution of internet congestion. In: 37th Research Conference on Communication, Information and Internet Policy, TPRC 2009 (2009)Google Scholar
  5. 5.
    Campbell, A., Aurrecoechea, C., Hauw, L.: A review of QoS architectures. ACM Multimedia Systems Journal 6, 138–151 (1996)Google Scholar
  6. 6.
    Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion games. In: SODA, pp. 169–178 (2007)Google Scholar
  7. 7.
    Correa, J., Schulz, A., Stier-Moses, N.: Selfish routing in capacitated networks. Math. Oper. Res. 29(4), 961–976 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibrium in load balancing. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  9. 9.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: STOC, pp. 604–612 (2004)Google Scholar
  10. 10.
    Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chicago J. Theor. Comput. Sci. 1 (2008)Google Scholar
  11. 11.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing nash equilibria for scheduling on restricted parallel links. In: STOC, pp. 613–622. ACM (2004)Google Scholar
  13. 13.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  14. 14.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: AAAI, pp. 489–494 (2005)Google Scholar
  15. 15.
    Mangold, S., Choi, S., May, P., Klein, O., Hiertz, G., Stibor, L.: IEEE 802.11e Wireless LAN for quality of service. In: Proc. European Wireless, vol. 18, pp. 32–39 (2002)Google Scholar
  16. 16.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Monderer, D., Shapley, L.: Potential games. Games and Economic Behavior 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Vöcking, B.: Congestion games: Optimization in competition. In: ACiD Workshop. Texts in Algorithmics, vol. 7, pp. 9–20 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laurent Gourvès
    • 1
  • Jérôme Monnot
    • 1
  • Stefano Moretti
    • 1
  • Nguyen Kim Thang
    • 2
  1. 1.LAMSADE, CNRS UMR 7243Université Paris DauphineFrance
  2. 2.IBISCUniversité d’Evry Val d’EssonneFrance

Personalised recommendations