A Classification of Weakly Acyclic Games

  • Krzysztof R. Apt
  • Sunil Simon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7615)


Weakly acyclic games form a natural generalization of the class of games that have the finite improvement property (FIP). In such games one stipulates that from any initial joint strategy some finite improvement path exists. We classify weakly acyclic games using the concept of a scheduler recently introduced in [1].


Nash Equilibrium Choice Function Player Game Coordination Game Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simon, S., Apt, K.R.: Choosing products in social networks. Manuscript, CWI, Amsterdam, The Netherlands, Computing Research Repository, CoRR (2012),
  2. 2.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behaviour 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behaviour 13, 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Engelberg, R., Schapira, M.: Weakly-Acyclic (Internet) Routing Games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 290–301. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Marden, J., Arslan, G., Shamma, J.: Regret based dynamics: convergence in weakly acyclic games. In: Proceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), pp. 194–201. IFAAMAS (2007)Google Scholar
  7. 7.
    Fabrikant, A., Jaggard, A.D., Schapira, M.: On the Structure of Weakly Acyclic Games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 126–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brokkelkamp, K.R., de Vries, M.J.: Convergence of Ordered Improvement Paths in Generalized Congestion Games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 61–71. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Grädel, E.: Back and forth between logic and games. In: Apt, K.R., Grädel, E. (eds.) Lectures in Game Theory for Computer Scientists, pp. 99–145. Cambridge University Press (2011)Google Scholar
  10. 10.
    König, D.: Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta Litt. Ac. Sci. 3, 121–130 (1927)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krzysztof R. Apt
    • 1
    • 2
  • Sunil Simon
    • 1
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.ILLCUniversity of AmsterdamThe Netherlands

Personalised recommendations