Abstract
Aggregate silk glands (Ag) of araneoid spiders are unusual because their products are not dry fibers but aqueous secretions, best known for acting as glues that aid in prey capture. We review what is currently known regarding the composition and occurrence of these secretions among builders of orb webs (primarily Nephilidae, Araneidae), cobwebs (Theridiidae), and sheet webs (Linyphiidae) and how the use of these secretions differs among these three lifestyles. For cobweb builders, the separation of the two pairs of Ag into morphologically, compositionally, and functionally distinct “typical” and “atypical” Ag types adds further complexity to an understanding of their secretions. Possible roles played by small molecule components of Ag secretions and aspects of their synthesis are considered. In orb webs and cobwebs, aggregate secretions produce the sticky droplets on the web’s sticky spiral and gumfoot lines, respectively. The droplets, at least in orb webs, are not homogeneous, and we discuss current ideas on organization and function within the droplets. We also review recent work on the physical behavior of sticky droplets in orb webs and cobwebs. This includes the recognition that adhesive force generated in orb webs is attributable to more than just the glycoprotein glue’s adhesion to a surface. Limits imposed by natural selection on the stickiness of the glue are also discussed.
Keywords
- Adhesive Force
- Glycine Betaine
- Silk Fiber
- Silk Gland
- Repetitive Domain
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options


References
Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linn Soc 141:447–626
Agnarsson I, Blackledge TA (2009) Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. J Zool 278:134–140
Anderson CM, Tillinghast EK (1980) GABA and taurine derivatives on the adhesive spiral of the orb web of Argiope spiders, and their possible behavioural significance. Physiol Entomol 5:101–106
Argintean S, Chen J, Kim M, Moore AMF (2006) Resilient silk captures prey in black widow cobwebs. Appl Phys A 82:235–241
Barrantes G, Eberhard WG (2007) The evolution of prey-wrapping behavior in spiders. J Nat Hist 41:1631–1658
Barrantes G, Eberhard WG (2010) Ontogeny repeats phylogeny in Steatoda and Latrodectus spiders. J Arachnol 38:485–494
Benjamin SP, Zschokke S (2002) Untangling the tangle-web: web construction behavior of the comb-footed spider Steatoda triangulosa and comments on phylogenetic implications (Araneae: Theridiidae). J Insect Behav 15:791–809
Benjamin SP, Zschokke S (2003) Webs of theridiid spiders: construction, structure and evolution. Biol J Linn Soc 78:293–305
Benjamin SP, Düggelin M, Zschokke S (2002) Fine structure of sheet-webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall), with remarks on the presence of viscid silk. Acta Zool 83:49–59
Blackledge TA, Summers AP, Hayashi CY (2005a) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108:41–46
Blackledge TA, Swindeman JE, Hayashi CY (2005b) Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J Exp Biol 208:1937–1949
Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA 106:5229–5234
Blackledge TA, Kuntner M, Agnarsson I (2011) The form and function of spider orb webs: evolution from silk to ecosystems. Adv Insect Physiol 41:175–262
Blackwall J (1835) Notice of several recent discoveries in the structure and economy of spiders. Trans Linn Soc Lond 16:471–485
Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362
Bonthrone KM, Vollrath F, Hunter BK, Sanders JKM (1992) The elasticity of spiders’ webs is due to water-induced mobility at a molecular level. Proc R Soc Lond B 248:141–144
Brasier M, Cotton L, Yenney I (2009) First report of amber with spider webs and microbial inclusions from the earliest Cretaceous (c. 140 Ma) of Hastings, Sussex. J Geol Soc Lond 166:989–997
Carico JE (1986) Web removal patterns in orb-weaving spiders. In: Shear WA (ed) Spiders: webs, behavior, and evolution. Stanford University Press, Stanford
Cartan CK, Miyashita T (2000) Extraordinary web and silk properties of Cyrtarachne (Araneae, Araneidae): a possible link between orb-webs and bolas. Biol J Linn Soc 71:219–235
Choresh O, Bayarmagnai B, Lewis RV (2009) Spider web glue: two proteins expressed from opposite strands of the same DNA sequence. Biomacromolecules 10:2852–2856
Coddington JA (1989) Spinneret silk spigot morphology: evidence for the monophyly of orbweaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae plus Nesticidae. J Arachnol 17:71–95
Crews SC, Opell BD (2006) The features of capture threads and orb-webs produced by unfed Cyclosa turbinata (Araneae: Araneidae). J Arachnol 34:427–434
Eberhard WG (1988) Behavioral flexibility in orb web construction: effects of supplies in different silk glands and spider size and weight. J Arachnol 16:295–302
Eberhard WG (2010) Possible functional significance of spigot placement on the spinnerets of spiders. J Arachnol 38:407–414
Eberhard WG, Agnarsson I, Levi HW (2008a) Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order. Syst Biodivers 6:415–475
Eberhard WG, Barrantes G, Madrigal-Brenes R (2008b) Vestiges of an orb-weaving ancestor? The “biogenetic law” and ontogenetic changes in the webs and building behavior of the black widow spider Latrodectus geometricus (Araneae Theridiidae). Ethol Ecol Evol 20:211–244
Edmonds DT, Vollrath F (1992) The contribution of atmospheric water vapour to the formation and efficiency of a spider’s capture web. Proc R Soc Lond B 248:145–148
Fischer FG, Brander J (1960) Eine Analyse der Gespinste der Kreuzspinne. Hoppe-Seyler’s Z Physiol Chem 320:92–102
Gosline J, Nichols C, Guerette P, Cheng A, Katz S (1995) The macromolecular design of spiders’ silks. In: Sarikaya M, Aksay IA (eds) Biomimetics: design and processing of materials. AIP Press, Woodbury
Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B 357:121–132
Guinea GV, Cerdeira M, Plaza GR, Elices M, Pérez-Rigueiro J (2010) Recovery in viscid line fibers. Biomacromolecules 11:1174–1179
Hawthorn AC, Opell BD (2003) van der Waals and hygroscopic forces of adhesion generated by spider capture threads. J Exp Biol 206:3905–3911
Higgins L, Rankin MA (1999) Nutritional requirements for web synthesis in the tetragnathid spider Nephila clavipes. Physiol Entomol 24:263–270
Higgins LE, Townley MA, Tillinghast EK, Rankin MA (2001) Variation in the chemical composition of orb webs built by the spider Nephila clavipes (Araneae, Tetragnathidae). J Arachnol 29:82–94
Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303
Kane DM, Joyce AM, Staib GR, Herberstein ME (2010) Optical surface profiling of orb-web spider capture silks. Bioinspir Biomim. doi:10.1088/1748-3182/5/3/036004
Kelly SL (1989) The chemical composition of the defensive secretion of the spider Latrodectus mactans (Fabricius). MS thesis, University of New Hampshire, Durham
Kovoor J (1977a) La soie et les glandes séricigènes des arachnides. Ann Biol 16:97–171
Kovoor J (1977b) Données histochimiques sur les glandes séricigènes de la veuve noire Latrodectus mactans Fabr. (Araneae, Theridiidae). Ann Sci Nat Zool Biol Anim 12e Sér 19: 63–87
Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin
Kovoor J, Lopez A (1983) Composition et histologie de l’appareil séricigène des Argyrodes, relations avec le comportement de ces araignées (Theridiidae). Rev Arachnol 5:29–43
Kovoor J, Zylberberg L (1979) Ultrastructure du canal des glandes agrégées et flagelliformes d’Araneus diadematus Clerck (Araneae, Araneidae). Zoomorphologie 92:217–239
Krejčík Z, Hollemeyer K, Smits THM, Cook AM (2010) Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. Microbiology 156:1547–1555
Lopardo L, Hormiga G (2008) Phylogenetic placement of the Tasmanian spider Acrobleps hygrophilus (Araneae, Anapidae) with comments on the evolution of the capture web in Araneoidea. Cladistics 24:1–33
Lopez A (1999) Un prédateur de papillons nocturnes extraordinaire: l’araignée Kaira alba (Hentz) et ses glandes à soie. Alexanor 21:195–201
Marques MR, Mendes MA, Tormena CF, Souza BM, Ribeiro SP, Rittner R, Palma MS (2004) Structure determination of an organometallic 1-(diazenylaryl)ethanol: a novel toxin subclass from the web of the spider Nephila clavipes. Chem Biodivers 1:830–838
Marques MR, Mendes MA, Tormena CF, Souza BM, Cesar LMM, Rittner R, Palma MS (2005) Structure determination of a tetrahydro-β-carboline of arthropod origin: a novel alkaloid-toxin subclass from the web of spider Nephila clavipes. Chem Biodivers 2:525–534
Miller JA (2007) Synaphridae of Madagascar (Araneae: Araneoidea): a new family record for the Afrotropical region. Proc Calif Acad Sci 4th Ser 58:21–48
Miller JA, Hormiga G (2004) Clade stability and the addition of data: a case study from erigonine spiders (Araneae: Linyphiidae, Erigoninae). Cladistics 20:385–442
Moon MJ, Kim TH (2005) Microstructural analysis of the capture thread spinning apparatus in orb web spiders. Entomol Res 35:133–140
Opell BD (2013) Cribellar thread. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)
Opell BD, Hendricks ML (2007) Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders. J Exp Biol 210:553–560
Opell BD, Hendricks ML (2009) The adhesive delivery system of viscous capture threads spun by orb-weaving spiders. J Exp Biol 212:3026–3034
Opell BD, Hendricks ML (2010) The role of granules within viscous capture threads of orb-weaving spiders. J Exp Biol 213:339–346
Opell BD, Schwend HS (2008) Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders. J Exp Zool 309A:11–16
Opell BD, Schwend HS (2009) Adhesive efficiency of spider prey capture threads. Zoology 112: 16–26
Opell BD, Markley BJ, Hannum CD, Hendricks ML (2008) The contribution of axial fiber extensibility to the adhesion of viscous capture threads spun by orb-weaving spiders. J Exp Biol 211:2243–2251
Opell BD, Lipkey GK, Hendricks ML, Vito ST (2009) Daily and seasonal changes in the stickiness of viscous capture threads in Argiope aurantia and Argiope trifasciata orb-webs. J Exp Zool 311A:217–225
Opell BD, Tran AM, Karinshak SE (2011a) Adhesive compatibility of cribellar and viscous prey capture threads and its implication for the evolution of orb-weaving spiders. J Exp Zool 315A:376–384
Opell BD, Karinshak SE, Sigler MA (2011b) Humidity affects the extensibility of an orb-weaving spider’s viscous thread droplets. J Exp Biol 214:2988–2993
Opell BD, Schwend HS, Vito ST (2011c) Constraints on the adhesion of viscous threads spun by orb-weaving spiders: the tensile strength of glycoprotein glue exceeds its adhesion. J Exp Biol 214:2237–2241
Palmer JM (1990) Comparative morphology of the external silk production apparatus of “primitive” spiders. PhD thesis, Harvard University, Cambridge
Peters HM (1987) Fine structure and function of capture threads. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin
Peters HM (1993) Functional organization of the spinning apparatus of Cyrtophora citricola with regard to the evolution of the web (Araneae, Araneidae). Zoomorphology 113:153–163
Peters HM (1995) Ultrastructure of orb spiders’ gluey capture threads. Naturwissenschaften 82:380–382
Peters HM, Kovoor J (1991) The silk-producing system of Linyphia triangularis (Araneae, Linyphiidae) and some comparisons with Araneidae: structure, histochemistry and function. Zoomorphology 111:1–17
Platnick NI (2012) The world spider catalog, version 12.5. American Museum of Natural History, online at http://research.amnh.org/iz/spiders/catalog. doi:10.5531/db.iz.0001. Accessed 25 June 2012
Platnick NI, Coddington JA, Forster RR, Griswold CE (1991) Spinneret morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). Am Mus Novit 3016:1–73
Richter G (1956) Untersuchungen über Struktur und Funktion der Klebefäden in den Fanggeweben ecribellater Radnetzspinnen. Naturwissenschaften 43:23
Rix MG, Harvey MS (2010) The spider family Micropholcommatidae (Arachnida, Araneae, Araneoidea): a relimitation and revision at the generic level. ZooKeys 36:1–321
Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19. doi:10.1038/ncomms1019
Sahni V, Blackledge TA, Dhinojwala A (2011a) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1:41. doi:10.1038/srep00041
Sahni V, Blackledge TA, Dhinojwala A (2011b) A review on spider silk adhesion. J Adhes 87:595–614
Salles HC, Volsi ECFR, Marques MR, Souza BM, dos Santos LD, Tormena CF, Mendes MA, Palma MS (2006) The venomous secrets of the web droplets from the viscid spiral of the orb-weaver spider Nephila clavipes (Araneae, Tetragnathidae). Chem Biodivers 3:727–741
Schildknecht H, Kunzelmann P, Krauß D, Kuhn C (1972) Über die Chemie der Spinnwebe, I: Arthropodenabwehrstoffe, LVII. Naturwissenschaften 59:98–99
Schulz S (1997) The chemistry of spider toxins and spider silk. Angew Chem Int Ed Engl 36:314–326
Schulz S (1999) Structural diversity of surface lipids from spiders. In: Diederichsen U, Lindhorst TK, Westermann B, Wessjohann LA (eds) Bioorganic chemistry: highlights and new aspects. Wiley-VCH, Weinheim
Schulz S (2001) Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647
Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge
Schütt K (1995) Drapetisca socialis (Araneae: Linyphiidae): web reduction—ethological and morphological adaptations. Eur J Entomol 92:553–563
Schütt K (2003) Phylogeny of Symphytognathidae s.l. (Araneae, Araneoidea). Zool Scr 32: 129–151
Sekiguchi K (1955) Differences in the spinning organs between male and female adult spiders. Sci Rep Tokyo Kyoiku Daigaku Sect B 8:23–32
Selden PA, Penney D (2010) Fossil spiders. Biol Rev 85:171–206
Selden PA, Shih C-K, Ren D (2011) A golden orb-weaver spider (Araneae: Nephilidae: Nephila) from the Middle Jurassic of China. Biol Lett 7:775–778
Suter RB, Stratton GE (2013) Predation by spitting spiders—elaborate venom gland, intricate delivery system. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)
Tillinghast EK, Chase SF (1985) Phosphorylase activity and glycogen utilization in the aggregate duct of orb weaving spiders. Comp Biochem Physiol 81B:1053–1055
Tillinghast EK, Christenson T (1984) Observations on the chemical composition of the web of Nephila clavipes (Araneae, Araneidae). J Arachnol 12:69–74
Tillinghast EK, Townley MA (1994) Silk glands of araneid spiders: selected morphological and physiological aspects. Am Chem Soc Symp Ser 544:29–44
Tillinghast EK, Townley MA, Wight TN, Uhlenbruck G, Janssen E (1993) The adhesive glycoprotein of the orb web of Argiope aurantia (Araneae, Araneidae). Mater Res Soc Symp Proc 292:9–23
Townley MA, Bernstein DT, Gallagher KS, Tillinghast EK (1991) Comparative study of orb web hygroscopicity and adhesive spiral composition in three araneid spiders. J Exp Zool 259: 154–165
Townley MA, Tillinghast EK, Neefus CD (2006) Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds. J Exp Biol 209:1463–1486
Townley MA, Pu Q, Zercher CK, Neefus CD, Tillinghast EK (2012) Small organic solutes in sticky droplets from orb webs of the spider Zygiella atrica (Araneae; Araneidae): β-Alaninamide is a novel and abundant component. Chem Biodivers 9:2159–2174
Uhl G (2013) Spider olfaction: attracting, detecting, luring and avoiding. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)
Vetter RS (1980) Defensive behavior of the black widow spider Latrodectus hesperus (Araneae: Theridiidae). Behav Ecol Sociobiol 7:187–193
Vogel S (2003) Comparative biomechanics: life’s physical world. Princeton University Press, Princeton
Vollrath F (1999) Biology of spider silk. Int J Biol Macromol 24:81–88
Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340:305–307
Vollrath F, Tillinghast EK (1991) Glycoprotein glue beneath a spider web’s aqueous coat. Naturwissenschaften 78:557–559
Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528
Volsi ECFR, Mendes MA, Marques MR, dos Santos LD, Santos KS, de Souza BM, Babieri EF, Palma MS (2006) Multiple bradykinin-related peptides from the capture web of the spider Nephila clavipes (Araneae, Tetragnathidae). Peptides 27:690–697
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Townley, M.A., Tillinghast, E.K. (2013). Aggregate Silk Gland Secretions of Araneoid Spiders. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-33989-9_21
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33988-2
Online ISBN: 978-3-642-33989-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)