Skip to main content

Spider Silk: Molecular Structure and Function in Webs

  • Chapter
  • First Online:
Book cover Spider Ecophysiology

Abstract

All spiders produce silk, and most produce multiple types of silk fibers. How these silks function in prey capture webs provides a crucial link between the molecular biology of silk and spider ecology. Silks are typically semicrystalline fibers that rank among the strongest, toughest, and stretchiest biological fibers. Spider silk proteins (spidroins) are modular in structure and composed mostly of repeated amino acid sequences that form predictably secondary structures that correlate with variation in the material properties of different types of silks. The ability of spidroins to be stored at high concentration in a liquid solution but rapidly undergo a phase shift to a solid fiber during spinning is controlled in part by evolutionarily conserved terminal regions of the proteins. This process also enables spiders to control some aspects of silk properties and structure when spinning silk under different conditions. Much of the evolutionary diversification of silk properties correlates with their use in webs. Orb webs present the best model where silks initially function in intercepting prey then stopping their flight and finally retaining the insects long enough to be captured. Significant trade-offs exist in the allocation of silk resources for these functions, but they are sometimes mitigated by evolutionary shifts in material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnarsson I, Dhinojwala A, Sahni V, Blackledge TA (2009) Spider silk as a novel humidity-driven biomimetic muscle. J Exp Biol 212:1990–1994

    Article  PubMed  Google Scholar 

  • Agnarsson I, Kuntner M, Blackledge TA (2010) Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS One 5(9):e11234. doi:11210.11371/journal.pone.0011234.doi:10.1371/journal.pone.0011234

    Article  PubMed  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  PubMed  CAS  Google Scholar 

  • Argintean S, Chen J, Kim M, Moore AMF (2006) Resilient silk captures prey in black widow cobwebs. Appl Phys A Mater Sci Process 82:235–241

    Article  CAS  Google Scholar 

  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(5):e514. doi:510.1371/journal.pone.0000514

    Article  PubMed  Google Scholar 

  • Barth FG (2012) Learning from animal sensors: the clever “design” of spider mechanoreceptors. In: Lakhtakia A, MartinPalma RJ (eds) Bioinspiration, biomimetics, and bioreplication 2012, vol 8339. Proc SPIE. doi:833904 10.1117/12.902456

    Google Scholar 

  • Blackledge TA (2012) Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. J Arachnol 40:1–12

    Article  Google Scholar 

  • Blackledge TA, Hayashi CY (2006) Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata. J Exp Biol 209:2452–2461

    Article  PubMed  Google Scholar 

  • Blackledge TA, Zevenbergen JM (2007) Condition dependent spider web architecture in the western black widow Latrodectus hesperus. Anim Behav 73:855–864

    Article  Google Scholar 

  • Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA 106:5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Blackledge TA, Kuntner M, Agnarsson I (2011) The form and function of spider orb webs: evolution from silk to ecosystems. Adv Insect Physiol 41:175–262

    Article  Google Scholar 

  • Blamires SJ, Chao IC, Tso IM (2010) Prey type, vibrations and handling interactively influence spider silk expression. J Exp Biol 213:3906–3910. doi:10.1242/jeb.046730

    Article  PubMed  CAS  Google Scholar 

  • Blamires SJ, Wu CL, Tso IM (2012) Variation in protein intake induces variation in spider silk expression. PLoS One 7(2):e31626. doi:10.1371/journal.pone.0031626

    Article  PubMed  CAS  Google Scholar 

  • Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu XY, La Mattina C, Vierra C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284:29097–29108. doi:10.1074/jbc.M109.021378

    Article  PubMed  CAS  Google Scholar 

  • Bond JE, Opell BD (1998) Testing adaptive radiation and key innovation hypotheses in spiders. Evolution 52:403–414

    Article  Google Scholar 

  • Boutry C, Blackledge TA (2008) The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. J Exp Zool 309A:542–552

    Article  Google Scholar 

  • Boutry C, Blackledge TA (2010) Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers. J Exp Biol 213:3505–3514

    Article  PubMed  Google Scholar 

  • Coddington JA (1989) Spinneret silk spigot morphology: evidence for the monophyly of orb-weaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae plus Nesticidae. J Arachnol 17:71–96

    Google Scholar 

  • Craig CL (1987a) The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders. Biol J Linn Soc 30:135–162

    Article  Google Scholar 

  • Craig CL (1987b) The significance of spider size to the diversification of spider-web architectures and spider reproductive modes. Am Nat 129:47–68

    Article  Google Scholar 

  • Craig CL (2003) Spider webs and silk: tracing evolution from molecules to genes to phenotypes. Oxford University Press, New York

    Google Scholar 

  • Cranford SW, Tarakanova A, Pugno NM, Buehler MJ (2012) Nonlinear material behaviour of spider silk yields robust webs. Nature 482(7383):72–76

    Article  PubMed  CAS  Google Scholar 

  • Dicko C, Porter D, Bond J, Kenney JM, Vollrath F (2008) Structural disorder in silk proteins reveals the emergence of elastomericity. Biomacromolecules 9:216–221. doi:10.1021/Bm701069y

    Article  PubMed  CAS  Google Scholar 

  • Eberhard WG (1986) Effects of orb-web geometry on prey interception and retention. In: Shear WA (ed) Spiders, webs, behavior and evolution. Stanford University Press, Stanford

    Google Scholar 

  • Eberhard WG (1990) Function and phylogeny of spider webs. Annu Rev Ecol Syst 21:341–372

    Article  Google Scholar 

  • Eisoldt L, Smith A, Scheibel T (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86

    Article  CAS  Google Scholar 

  • Garb JE, DiMauro T, Vo V, Hayashi CY (2006) Silk genes support the single origin of orb webs. Science 312(5781):1762

    Article  PubMed  CAS  Google Scholar 

  • Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi:10.1186/1471-2148-10-243

    Article  PubMed  Google Scholar 

  • Garrido MA, Elices M, Viney C, Pérez-Rigueiro J (2002) Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces. Polymer 43:1537–1540

    Article  CAS  Google Scholar 

  • Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291(5513):2603–2605

    Article  PubMed  CAS  Google Scholar 

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    PubMed  CAS  Google Scholar 

  • Guinea GV, Elices M, Pérez-Rigueiro J, Plaza GR (2005) Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. J Exp Biol 208:25–30

    Article  PubMed  CAS  Google Scholar 

  • Harmer AMT, Blackledge TA, Madin JS, Herberstein ME (2011) High-performance spider webs: integrating biomechanics, ecology and behaviour. J R Soc Interface 8:457–471. doi:10.1098/rsif.2010.0454

    Article  PubMed  Google Scholar 

  • Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784

    Article  PubMed  CAS  Google Scholar 

  • Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287(5457):1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21:1950–1959

    Article  PubMed  CAS  Google Scholar 

  • Higgins LE, Townley MA, Tillinghast EK, Rankin MA (2001) Variation in the chemical composition of orb webs built by the spider Nephila clavipes (Araneae, Tetragnathidae). J Arachnol 29:82–94

    Article  Google Scholar 

  • Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18:374–379

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP (2010) Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem Commun 46:6714–6716. doi:10.1039/c0cc00829j

    Article  CAS  Google Scholar 

  • Keten S, Xu ZP, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 9:359–367. doi:10.1038/nmat2704

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Edmonds DT, Vollrath F (1995) Structural engineering of an orb-spider’s web. Nature (London) 373(6510):146–148

    Article  CAS  Google Scholar 

  • Masters WM (1984) Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae): 1. Transmission through the web. Behav Ecol Sociobiol 15:207–216

    Article  Google Scholar 

  • Opell BD (2013) Cribellar thread. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Opell BD, Bond JE, Warner DA (2006) The effects of capture spiral composition and orb-web orientation on prey interception. Zoology 109:339–345

    Article  PubMed  Google Scholar 

  • Perry DJ, Bittencourt D, Siltberg-Liberles J, Rech EL, Lewis RV (2010) Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11:3000–3006. doi:10.1021/bm1007585

    Article  CAS  Google Scholar 

  • Rousseau ME, Lefevre T, Pezolet M (2009) Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes Spiders. Biomacromolecules 10:2945–2953. doi:10.1021/bm9007919

    Article  PubMed  CAS  Google Scholar 

  • Sahni V, Labhasetwar DV, Dhinojwala A (2012) Spider silk inspired functional microthreads. Langmuir 28:2206–2210

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 3:14. doi:10.1186/1475-2859-3-14

    Article  PubMed  Google Scholar 

  • Seidl T, Vidoni R (2013) Adhesion to flat surfaces: from spiders to stickers. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York [USA], and reinterpretations of Devonian Araneae. Palaeontology (Durham) 34:241–282

    Google Scholar 

  • Sensenig A, Agnarsson I, Blackledge TA (2010) Behavioural and biomaterial coevolution in spider orb webs. J Evol Biol 23:1839–1856. doi:10.1111/j.1420-9101.2010.02048.x

    Article  PubMed  CAS  Google Scholar 

  • Sensenig A, Lorentz KA, Kelly SP, Blackledge TA (2012) Spider orb webs rely on radial threads to absorb prey energy. J R Soc Interface 9:1880–1891

    Article  PubMed  Google Scholar 

  • Shear WA (ed) (1986) Spiders, webs, behavior, and evolution. Stanford University Press, Stanford

    Google Scholar 

  • Spagna JC, Goldman DI, Lin P-C, Koditschek DE, Full RJ (2007) Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspir Biomim 2:9–18

    Article  PubMed  CAS  Google Scholar 

  • Swanson BO, Blackledge TA, Summers AP, Hayashi CY (2006) Spider dragline silk: correlated and mosaic evolution in high performance biological materials. Evolution 60:2539–2551

    PubMed  Google Scholar 

  • Swanson BO, Blackledge TA, Hayashi CY (2007) Spider capture silk: performance implications of variation in an exceptional biomaterial. J Exp Zool A 307A:654–666

    Article  CAS  Google Scholar 

  • Townley MA, Tillinghast E (2013) Aggregate silk gland secretions of araneoid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340(6231):305–307

    Article  Google Scholar 

  • Vollrath F, Porter D (2006) Spider silk as a model biomaterial. Appl Phys A 82:205–212

    Article  CAS  Google Scholar 

  • Watanabe T (2000) Web tuning of an orb-web spider, Octonoba sybotides, regulates prey-catching behaviour. Proc R Soc Lond B Biol Sci 267(1443):565–569

    Article  CAS  Google Scholar 

  • Zentner L (2013) Modelling and application of the hydraulic spider leg mechanism. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Blackledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blackledge, T.A. (2013). Spider Silk: Molecular Structure and Function in Webs. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_20

Download citation

Publish with us

Policies and ethics