Skip to main content

Spider Olfaction: Attracting, Detecting, Luring and Avoiding

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

Chemical communication is very likely used by all spiders in many contexts, but we know little about the nature of the substances involved, their biosynthesis and where and how they are perceived. However, during the last decade, it became more and more obvious that the chemical communication systems in spiders are important in reproduction, prey detection, predator avoidance and even in the context of site selection. The chemical signals involved and the spider’s responses can be highly complex and plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aisenberg A, Baruffaldi L, González M (2010) Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps. Naturwissenschaften 97:63–70

    Article  PubMed  CAS  Google Scholar 

  • Allan RA, Elgar MA, Capon RJ (1996) Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc R Soc B 263:69–73

    Article  CAS  Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Berlin

    Book  Google Scholar 

  • Bell RD, Rypstra AL, Persons MH (2006) The effect of predator hunger on chemically mediated antipredator responses and survival in the wolf spider Pardosa milvina (Araneae: Lycosidae). Ethology 112:903–910

    Article  Google Scholar 

  • Benamú MA, Schneider MI, Sanchez NE (2010) Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere 78:871–876

    Article  PubMed  Google Scholar 

  • Bonte D (2012) Cost-benefit balance of dispersal and the evolution of conditional dispersal strategies in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T (2012) Costs of dispersal. Biol Rev 87:290–312

    Article  PubMed  Google Scholar 

  • Chapman T, Davies SJ (2004) Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides 25:1477–1490

    Article  PubMed  CAS  Google Scholar 

  • Chinta SP, Goller S, Lux J, Funke S, Uhl G, Schulz S (2010) The sex pheromone of the wasp spider Argiope bruennichi. Angew Chem Int Ed. doi:10.1002/anie.200906311

  • Clark RJ, Harland DP, Jackson RR (2000) Speculative hunting by an araneophagic salticid spider. Behaviour 137:1601–1612

    Article  Google Scholar 

  • Cross FR, Jackson RR (2009) How cross-modality effects during intraspecific interactions of jumping spiders differ depending on whether a female-choice or mutual-choice mating system is adopted. Behav Processes 80:162–168

    Article  PubMed  Google Scholar 

  • Cross FR, Jackson RR, Pollard SD (2009) How blood-derived odor influences mate-choice decisions by a mosquito-eating predator. Proc Natl Acad Sci USA 106:19416–19419

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: an ecological perspective. Annu Rev Ecol Syst 32:1–23

    Article  Google Scholar 

  • Eberhard WG (1981) The single line web of Phoroncidia studo Levi (Araneae: Theridiidae): a prey attractant? J Arachnol 9:229–232

    Google Scholar 

  • Eberhard WG, Guzman Gomez S, Catley KM (1993) Correlation between spermathecal morphology and mating systems in spiders. Biol J Linn Soc 50:197–209

    Article  Google Scholar 

  • Elias DO, Hebets EA, Hoy RR, Mason AC (2005) Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae). Anim Behav 69:931–938

    Article  Google Scholar 

  • Foelix RF (2011) The biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Foelix RF, Chu-Wang I-W (1973) The morphology of spider sensilla. II. Chemoreceptors. Tissue Cell 5:461–478

    Article  PubMed  CAS  Google Scholar 

  • Foellmer MW, Fairbairn DJ (2003) Spontaneous male death during copulation in an orb weaving spider. Proc R Soc Lond B 270:S183–S185

    Article  Google Scholar 

  • Francke W, Schulz S (1999) Pheromones. In: Barton D, Nakanishi K, Meth-Cohn O, Mori K (eds) Comprehensive natural products chemistry, vol 8. Elsevier, Amsterdam

    Google Scholar 

  • Gaskett AC (2007) Spider sex pheromones: emission, reception, structures, and function. Biol Rev 82:27–48

    Article  PubMed  CAS  Google Scholar 

  • Gemeno C, Yeargan KV, Haynes KF (2000) Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: identification and quantification of a major prey’s sex pheromone components in the spider’s volatile emissions. J Chem Ecol 26:1235–1243

    Article  CAS  Google Scholar 

  • Griesinger LM, Evans SC, Rypstra AL (2011) Effects of a glyphosate-based herbicide on mate location in a wolf spider that inhabits agroecosystems. Chemosphere 84:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Haynes KF, Yeargan KV, Gemeno C (2001) Detection of prey by a spider that aggressively mimics pheromone blends. J Insect Behav 14:535–543

    Article  Google Scholar 

  • Haynes KF, Gemeno C, Yeargan KV, Millar JG, Johnson KM (2002) Aggressive chemical mimicry of moth pheromones by a bolas spider: how does this specialist predator attract more than one species of prey? Chemoecology 12:99–105

    Article  CAS  Google Scholar 

  • Heiling AM, Cheng K, Herberstein ME (2004) Exploitation of floral signals by crab spiders (Thomisus spectabilis, Thomisidae). Behav Ecol 15:321–326

    Article  Google Scholar 

  • Herberstein ME, Wignall A (2011) Deceptive signals in spiders. In: Herberstein ME (ed) Spider behaviour. Flexibility and versatility. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Hosken DJ, Stockley P (2003) Benefits of polyandry: a life history perspective. Evol Biol 33:173–194

    Google Scholar 

  • Hostettler S, Nentwig W (2006) Olfactory information saves venom during prey-capture of the hunting spider Cupiennius salei (Araneae: Ctenidae). Funct Ecol 20:369–375

    Article  Google Scholar 

  • Irwin RE, Adler LS, Brody AK (2004) The dual role of floral traits: pollinator attraction and plant defence. Ecology 85:1503–1511

    Article  Google Scholar 

  • Jackson RR, Clark RJ, Harland DP (2002) Behavioural and cognitive influences of kairomones on an araneophagic jumping spider. Behaviour 139:749–775

    Article  Google Scholar 

  • Jackson RR, Nelson XJ, Sune GO (2005) A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proc Natl Acad Sci USA 102:15155–15160

    Article  PubMed  CAS  Google Scholar 

  • Jerhod E, Stoltz JA, Andrade MCB, Schulz S (2010) Acylated serine derivative: a new class of arthropod pheromones of the Australian redback spider, Latrodectus hasselti. Angew Chem Int Ed 49:1–5

    Article  Google Scholar 

  • Johanson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289

    Article  Google Scholar 

  • Johnson A, Revis O, Chadwik Johnson J (2011) Chemical prey cues influence the urban microhabitat preferences of Western black widow spiders, Latrodectus hesperus. J Arachnol 39:449–453

    Article  Google Scholar 

  • Johnston RE (2003) Chemical communication in rodents: from pheromones to individual recognition. J Mammal 84:1141–1162

    Article  Google Scholar 

  • Junker RR, Blüthgen N (2010) Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 105:777–782

    Article  PubMed  Google Scholar 

  • Junker RR, Bretscher S, Dötterl S, Blüthgen N (2011) Phytochemical cues affect hunting-site choices of a nursery web spider (Pisaura mirabilis) but not a crab spider (Misumena vatia). J Arachnol 39:113–117

    Article  Google Scholar 

  • Jurenka R (2004) Insect pheromone biosynthesis. Top Curr Chem 239:97–132

    Article  PubMed  CAS  Google Scholar 

  • Kasumovic MM, Andrade MCB (2004) Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): species- and population-specific responses. Can J Zool 82:1027–1034

    Article  Google Scholar 

  • Kevan PG, Greco CF (2001) Contrasting patch choice behaviour by immature ambush predators, a spider (Misumena vatia) and an insect (Phymata americana). Ecol Entomol 26:148–153

    Article  Google Scholar 

  • Koh TH, Seah WK, Yap L-MYL, Li D (2009) Pheromone-bases female mate choice and its effect on reproductive investment in a spitting spider. Behav Ecol Sociobiol 63:923–930

    Article  Google Scholar 

  • Lehmann LM, Walker SE, Persons MH (2004) The influence of predator sex on chemically mediated antipredator response in the wolf spider Pardosa milvina (Araneae: Lycosidae). Ethology 110:323–339

    Article  Google Scholar 

  • Levi HW (1993) The orb-weaver genus Kaira (Araneae, Araneidae). J Arachnol 21:209–225

    Google Scholar 

  • Li D, Jackson RR (2005) Influence of diet-related chemical cues from predators on the hatching of egg-carrying spiders. J Chem Ecol 31:333–342

    Article  PubMed  CAS  Google Scholar 

  • Lürling M, Scheffer M (2007) Info-disruption: pollution and the transfer of chemical information between organisms. Trends Ecol Evol 22:374–379

    Article  PubMed  Google Scholar 

  • McGregor PK (2005) Communication. In: Bolhuis JJ, Giraldear L-A (eds) The behaviour of animals. Mechanisms, function, and evolution. Blackwell, Oxford

    Google Scholar 

  • Michalkova V, Pekár S (2009) How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). Biol Control 51:444–449

    Article  CAS  Google Scholar 

  • Nelson XJ, Jackson RR (2011a) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour. Flexibility and versatility. Cambridge University Press, Cambridge

    Google Scholar 

  • Nelson XJ, Jackson RR (2011b) Flexible use of anti-predator defences. In: Herberstein ME (ed) Spider behaviour. Flexibility and versatility. Cambridge University Press, Cambridge

    Google Scholar 

  • Nentwig W (1987) The prey of spiders. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Chapter  Google Scholar 

  • Nessler SH, Uhl G, Schneider JM (2007) Genital damage in the orb-weaving spider Argiope bruennichi (Araneae: Araneidae) maximises paternity success. Behav Ecol 18:174–181

    Article  Google Scholar 

  • Papke MD, Riechert SE, Schulz S (2001) An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim Behav 61:877–886

    Article  Google Scholar 

  • Peckham GW, Peckham EG (1887) Some observations on the mental powers of spiders. J Morphol 1:383–419

    Article  Google Scholar 

  • Pekár S (2012) Side-effect of synthetic pesticides on spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Persons MH, Lynam EC (2004) Pardosa milvina (Araneae: Lycosidae) spiderling movement in the presence of conspecific and heterospecific silk and excreta. J Arachnol 32:341–344

    Article  Google Scholar 

  • Persons MH, Rypstra AL (2000) Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35

    Article  Google Scholar 

  • Persons MH, Rypstra AL (2001) Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. J Chem Ecol 27:2493–2503

    Article  PubMed  CAS  Google Scholar 

  • Persons MH, Walker SE, Rypsta AL, Marshall SD (2001) Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim Behav 61:43–51

    Article  PubMed  Google Scholar 

  • Persons MH, Walker SE, Rypsta AL (2002) Fitness costs and benefits of antipredator behavior mediated by chemotactic cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). Behav Ecol 13:386–392

    Article  Google Scholar 

  • Punzo F, Kukoyi O (1997) The effects of prey chemical cues on patch residence time in the wolf spider Trochosa parthenus (Chamberlin) (Lycosidae) and the lynx spider Oxyopes salticus Hentz (Oxyopidae). Bull Brit Arachnol Soc 10:323–326

    Google Scholar 

  • Schäfer MA, Misof B, Uhl G (2008) Effects of body size of both sexes and female mating history on male mating behavior and paternity success in a spider. Anim Behav 76:75–86

    Article  Google Scholar 

  • Schneider JM, Gilberg S, Fromhage L, Uhl G (2006) Sexual conflict over remating in a cannibalistic spider. Anim Behav 71:781–788

    Article  Google Scholar 

  • Schonewolf KW, Bell R, Rypstra AL, Persons MH (2006) Field evidence of an airborne enemy avoidance kairomone in wolf spiders. J Chem Ecol 32:1565–1576

    Article  PubMed  CAS  Google Scholar 

  • Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Miller JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Schulz S, Toft S (1993) Identification of a sex pheromone from a spider. Science 260:1635–1637

    Article  PubMed  CAS  Google Scholar 

  • Searcy LE, Rypstra AL, Persons MH (1999) Airborne chemical communication in the wolf spider Pardosa milvina. J Chem Ecol 25:2527–2533

    Article  CAS  Google Scholar 

  • Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton

    Google Scholar 

  • Singer F, Riechert SE, Xu H, Morris AW, Becker E, Hale JA, Noureddine MA (2000) Analysis of courtship success in the funnel web spider Agelenopsis aperta. Behaviour 137:93–117

    Article  Google Scholar 

  • Stowe MK, Tumlinson JH, Heath RR (1987) Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science 236:964–967

    Article  PubMed  CAS  Google Scholar 

  • Stowe MK, Turlings TCJ, Loughrin JH, Lewis WJ, Tumlinson JH (1995) The chemistry of eavesdropping, alarm, and deceit. Proc Natl Acad Sci USA 92:23–28

    Article  PubMed  CAS  Google Scholar 

  • Tichy H, Gingl E, Ehn R, Papke M, Schulz S (2001) Female sex pheromone of a wandering spider (Cupiennius salei): identification and sensory reception. J Comp Physiol A 187:75–78

    Article  PubMed  CAS  Google Scholar 

  • Townley MA, Tillinghast E (2012) Aggregate silk gland secretions of araneoid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Trabalon M (2012) Chemical communication and contact cuticular compounds in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Uhl G (1994) Genital morphology and sperm storage in Pholcus phalangioides (Fuesslin) (Pholcidae; Araneae). Acta Zool 75:13–25

    Article  Google Scholar 

  • Uhl G, Elias DO (2011) Communication. In: Herberstein ME (ed) Spider behaviour. Flexibility and versatility. Cambridge University Press, Cambridge

    Google Scholar 

  • Uhl G, Nessler SH, Schneider JM (2010) Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica 138:75–104

    Article  PubMed  Google Scholar 

  • Vereecken NJ, McNeil JN (2010) Cheaters and liars: chemical mimicry at its best. Can J Zool 88:725–752

    Article  Google Scholar 

  • Watson PJ (1986) Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigiosa (Linyphiidae). Science 233:219–220

    Article  PubMed  CAS  Google Scholar 

  • Wrinn KM, Evans SC, Rypstra AL (2012) Predator cues and an herbicide affect activity and emigration in an agrobiont wolf spider. Chemosphere 87:390–396

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Xiao Y, Zhang J, Li S (2009) A two-component female-produced pheromone of the spider Pholcus beijingensis. J Chem Ecol 35:769–778

    Article  PubMed  CAS  Google Scholar 

  • Yeargan KV (1994) Biology of bolas spiders. Annu Rev Entomol 39:81–99

    Article  Google Scholar 

  • Yeargan KV, Quate LW (1996) Juvenile bolas spiders attract psychodid flies. Oecologia 106:266–271

    Article  Google Scholar 

Download references

Acknowledgements

I cordially thank Ken Haynes, Michael Schmitt and Maxene Graze for critically reading the manuscript and many colleagues for providing colour photographs of some of the treated species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Uhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uhl, G. (2013). Spider Olfaction: Attracting, Detecting, Luring and Avoiding. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_11

Download citation

Publish with us

Policies and ethics