A Proposed Approach to Extend the Economic Order Quantity (EOQ) Model Using Discrete Event Simulation

  • Giovanni Davoli
  • Riccardo Melloni
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 384)

Abstract

The economic order quantity (EOQ) and the economic production quantity (EPQ) are well-known and commonly used inventory control techniques. The standard results are easy to apply but are based on a number of unrealistic assumptions. One of the assumption is that the demand is normally distributed in any interval. In several practical cases the assumption about independence of successive demands, and consequently demand normal distribution in any interval, is not supported by real data. This paper investigates the effects on the expected service level (SL) after relaxing normal distribution assumption on the demand. The present work shows a possible strategy to use classic inventory model, such as EOQ/EPQ model, adopting discrete event simulation analysis to quantify model performances under relaxed assumptions.

Keywords

EOQ inventory techniques discrete event simulation analysis 

References

  1. 1.
    Harris, F.W.: Howmany parts to make at once. Factory, The Magazine of Management 10(2), 135–136, 152 (1913), reprinted in Operations Research 38(6) (November-December 1990) Google Scholar
  2. 2.
    Brown, R.G.: Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  3. 3.
    Bather, J.A.: A continuous time inventory model. J. Appl. Prob. 3, 538–549 (1966)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Tersine, R.J.: Principles of inventory and materials management. North-Holland, Elsevier Science Publishing Co., Inc. (1988)Google Scholar
  5. 5.
    Ghiani, G., Laporte, G., Musmanno, R.: Introduction to logistics systems planning and control. John Wiley & Sons Ltd., West Sussex (2004)Google Scholar
  6. 6.
    Markland, R.E., Vickery, S.K., Davis, R.A.: Operation management, 2nd edn. South-Western, Ohio (1998)Google Scholar
  7. 7.
    Humphrey, A.S., Taylor, G.D.: Stock level determination and sensitivity analysis in repair/rework operations. Int. J. Op. & Prod. Man. 18(6), 612–630 (1998)CrossRefGoogle Scholar
  8. 8.
    Borgonovo, E.: Sensitivity analysis with finite changes: An application to modified EOQ models. Eu. J. Op. Res. 200, 127–138 (2010)MATHCrossRefGoogle Scholar
  9. 9.
    Chan, W.M., Ibrahim, R.N., Lochert, P.B.: A new EPQ model: integrating lower pricing, rework and reject situations. Prod. Plan. & Cont. 14(7), 588–595 (2003)CrossRefGoogle Scholar
  10. 10.
    Goyal, S.K., Giri, B.C.: Recent trends in modeling of deteriorating inventory. Eu. J. Opl. Res. 134, 1–16 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ferguson, M., Jayaraman, V., Souza, G.C.: Note: Application of the EOQ model with nonlinear holding cost to inventory management of perishables. Eu. J. Opl. Res. 180, 485–490 (2007)MATHCrossRefGoogle Scholar
  12. 12.
    Inderfurth, K., Linder, G., Rachaniotis, N.P.: Lot sizing in a production system with rework and product deteriorating. Int. J. Prod. Res. 43(7), 1355–1374 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Chao, H.: The EOQ model with stochastic demand and discounting. Eu. J. Op. Res. 59, 434–443 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Lowe, T.J., Schwarz, L.B.: Parameter estimation for the EOQ lot-size model: minimax and expected value choices. Naval Res. Log. Quart. 30, 367–376 (1983)MATHCrossRefGoogle Scholar
  15. 15.
    Hojati, M.: Bridging the gap between probabilistic and fuzzy-parameter EOQ models. Int. J. Prod. Ec. 91, 215–221 (2004)CrossRefGoogle Scholar
  16. 16.
    Dobson, G.: Sensitivity of the EOQ model to parameter estimates. Op. Res. 36(4), 570–574 (1988)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mykytka, E.F., Ramberg, J.S.: On the sensitivity of the EOQ to errors in the forecast of demand. IIE Trans. 16(2), 144–151 (1984)CrossRefGoogle Scholar
  18. 18.
    Mahmoud, M.S., Younis, M.A.: Sensitivity analysis of productive inventories under modeling errors. Mat. Comp. Mod. 13(7), 65–75 (1990)MATHCrossRefGoogle Scholar
  19. 19.
    Higle, J.L.: A note on the sensitivity of the EOQ. IIE Trans. 21(3), 294–297 (1989)CrossRefGoogle Scholar
  20. 20.
    Mehrez, A., Ben-Arieh, D.: All-unit discounts, multi-item inventory model with stochastic demand, service level constraints and finite horizon. Int. J. of Prod. Res. 29(8), 1615–1628 (1991)MATHCrossRefGoogle Scholar
  21. 21.
    Naddor, E.: Sensitivity to distributions in inventory systems. Man. Sci. 24, 1769–1771 (1978)CrossRefGoogle Scholar
  22. 22.
    Hebert, J.E., Deckro, F.: A simulation analysis of dynamic inventory policies in a generalized stochastic environment. In: Proc. of the W. Sim. Conf., Washington, DC, pp. 843–847 (December 1977)Google Scholar
  23. 23.
    Benton, W.C.: Safe stock and service levels in periodic review inventory system. J. Opl. Res. Soc. 42(12), 1087–1095 (1991)MATHGoogle Scholar
  24. 24.
    Lau, H.S., Zaki, A.: The sensitivity of inventory decisions to the shape of lead time demand distribution. IIE Trans. 14, 265–271 (1982)Google Scholar
  25. 25.
    Ziegler, R.: Criteria for measurement of the cost parameters of an economic order quantity. Ph.D. dissertation, Univ. of North Carolina at Chapel Hill (1973)Google Scholar
  26. 26.
    De Castro, E., Tabucanon, M.T., Nagarur, N.N.: A production order quantity model with stochastic demand for a chocolate milk manufacturer. Int. J. Prod. Ec. 49, 145–156 (1997)CrossRefGoogle Scholar
  27. 27.
    Persona, A., Battini, D., Manzini, R., Pareschi, A.: Optimal safety stock levels of subassemblies and manufacturing components. Int. J. Prod. Eco. 110, 147–159 (2007)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Giovanni Davoli
    • 1
  • Riccardo Melloni
    • 1
  1. 1.Department of Mechanical and Civil Engineering (DIMeC)University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations