Cyclic Steady State Refinement: Multimodal Processes Perspective

  • Grzegorz Bocewicz
  • Peter Nielsen
  • Zbigniew A. Banaszak
  • Vinh Quang Dang
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 384)

Abstract

The cyclic scheduling problem modeled in terms of Cyclic Concurrent Process Systems is considered. The problem can be seen as a kind of Diophantine problem, hence its solvability, i.e. schedulability, plays a pivotal role in many supply-chain problems. In contradiction to the traditionally offered solutions the approach proposed allows one to take into account such behavioral features as transient periods and deadlocks occurrence. So, the contribution’s aim is the modeling framework enabling an evaluation of cyclic scheduling problems solvability, i.e., the declarative approach to reachability problems regarding cyclic steady states determination as well as conditions guaranteeing assumed performance of multimodal processes executed within a concurrent cyclic processes environment.

Keywords

cyclic processes multimodal process state space periodicity dispatching rules 

References

  1. 1.
    Alpan, G., Jafari, M.A.: Dynamic analysis of timed Petri nets: a case of two processes and a shared resource. IEEE Trans. on Robotics and Automation 13(3), 338–346 (1997)CrossRefGoogle Scholar
  2. 2.
    Bocewicz, G., Wójcik, R., Banaszak, Z.: Design of Admissible Schedules for AGV Systems with Constraints: A Logic-Algebraic Approach. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 578–587. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bocewicz, G., Wójcik, R., Banaszak, Z.A.: Cyclic Steady State Refinement. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds.) International Symposium on DCAI. AISC, vol. 91, pp. 191–198. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Fournier, O., Lopez, P., Lan Sun Luk, J.-D.: Cyclic scheduling following the social behavior of ant colonies. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 450–454 (2002)Google Scholar
  5. 5.
    Levner, E., Kats, V., Alcaide, D., Pablo, L., Cheng, T.C.E.: Complexity of cyclic scheduling problems: A state-of-the-art survey. Computers and Industrial Engineering 59(2), 352–361 (2010)CrossRefGoogle Scholar
  6. 6.
    Liebchen, C., Möhring, R.H.: A case study in periodic timetabling. Electronic Notes in Theoretical Computer Science 66(6), 21–34 (2002)CrossRefGoogle Scholar
  7. 7.
    Polak, M., Majdzik, P., Banaszak, Z., Wójcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. In: Skowron, A. (ed.) Fundamenta Informaticae, vol. 60(1-4), pp. 269–289. ISO Press (2004)Google Scholar
  8. 8.
    Song, J.-S., Lee, T.-E.: Petri net modeling and scheduling for cyclic job shops with blocking. Computers & Industrial Engineering 34(2), 281–295 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wójcik, R.: Constraint programming approach to designing conflict-free schedules for repetitive manufacturing processes. In: Cunha, P.F., Maropoulos, P.G. (eds.) Digital Enterprise Technology. Perspectives and Future Challenges, pp. 267–274. Springer (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Grzegorz Bocewicz
    • 1
  • Peter Nielsen
    • 2
  • Zbigniew A. Banaszak
    • 3
  • Vinh Quang Dang
    • 2
  1. 1.Dept. of Computer Science and ManagementKoszalin University of TechnologyKoszalinPoland
  2. 2.Dept. of Mechanical and Manufacturing EngineeringAalborg UniversityDenmark
  3. 3.Faculty of Management, Dept. of Business InformaticsWarsaw University of TechnologyWarsawPoland

Personalised recommendations